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Some Definitions

Minkowski space Rn
1 is just Rn equipped with the

standard signature (n− 1, 1) inner product:

〈v,w〉 = v1w1 + . . .+ vn−1wn−1 − vnwn.

A Lorentzian manifold is defined like a Riemannian
manifold, except the tangent spaces resemble Minkow-
ski space instead of Euclidean space. Lorentzian man-
ifolds are models for general relativity:

v is spacelike if 〈v,v〉 > 0

v is timelike if 〈v,v〉 < 0

v is lightlike if 〈v,v〉 = 0.

A world line is a path in a Lorentzian manifold traced
out by an “observer” (all tangent vectors are timelike).



More Definitions

Minkowski space Rn
1 (like Euclidean space in the Rie-

mannian case) is the model space for flat Lorentzian
manifolds. The model spaces for constant positive
and negative curvature Lorentzian manifolds are called
de Sitter and anti-de Sitter space respectively:

Sn1 = {v ∈ Rn+1
1 | 〈v,v〉 = +1}

and
Hn

1 = {v ∈ Rn+1
2 | 〈v,v〉 = −1}

Note that the definitions (and the notation) are com-
pletely analogous to the Riemannian model spaces.
Here’s a picture of de Sitter space – it is sometimes
used as a model of an “inflationary universe”:



Main Problems

A spacetime will be a compact Lorentzian manifold
with non-empty spacelike boundary (compactness is
essential for what I’ll describe, though really only of
the spacelike slices so M ×R with M closed is fine).
We will assume it is time-orientable so we can talk
about the past boundary and the future boundary:

I. Determine all possible topologies of the universe (i.e.
of “spacelike slices”).

II. More generally, describe the moduli space of Lor-
entzian metrics on a fixed topological type M3×R (or
M2 ×R as a non-trivial “warmup”).

III. Can the topology of the universe change?



Remarks On These Problems

I. We leave the determination of the topology of the
actual universe to the physicists; N. Cornish, J. Weeks,
et al suggest that the universe ought to be a small-
volume closed hyperbolic 3-manifold (the “circles in
the sky” business). Later in the talk we’ll see some
non-trivial topological constraints on spacelike slices.

II. Here’s a more precise and tractable version: de-
scribe the moduli space Λ(M) of constant curvature
Lorentzian metrics on M ×R which are causally triv-
ial (every world line crosses M × 1

2 exactly once) and
maximal such.

Motivation: In addition to being physically interest-
ing, it turns out that the Lorentzian moduli space can
often be reduced to studying various (well-understood
or else interesting) Riemannian moduli problems (e.g.
something like Teichmüller theory when M is a sur-
face). Information flows in both directions.

III. We will see that in many cases there is a negative
answer. These are called, cleverly enough, “no topol-
ogy change” theorems. They fall out from the analysis
of II.



Some flat examples

A hyperbolic metric on Mn is given by a cocompact
lattice π1(M) ∼= Γ ⊂ O(n, 1); this is the subgroup of
isometries of Rn+1

1 fixing 0; the quotient of the interior
of the upper cone defines a flat Lorentzian metric on
M ×R.

This construction provides a Teichmüller space’s worth
of flat spacetimes when n = 2; a single example for
n ≥ 3 by Mostow rigidity.



Causal horizons

These examples are causally trivial in the sense de-
fined earlier and also maximal: if we define the causal
horizon of a spacetime to be the boundary of a maxi-
mal causally trivial extension, then it is easy to show
that points appear in the causal horizon precisely when
there is a lightlike straight line missing a slice M×{t}.
Thus for these examples the causal horizon is the cone.

Determining the action of the holonomy group Γ on
the causal horizon is often fun and physically interest-
ing: in particular this is how we prove “no-topology-
change” theorems. The point is that for a topology-
change, a spacetime has to evolve past its causal hori-
zon (due to Geroch). For the examples just given, this
is impossible: the action of Γ fails to be discontinuous
when we reach the cone (which is identified with the
space of horospheres – action is minimal/ergodic by
work of Hedlund, Veech, Ratner, etc.).



Are there other examples?

A flat Lorentzian metric in Λ(M) defines a homomor-
phism ρ : π1(M)→ Isom(Rn+1

1 ). Let

L : Isom(Rn+1
1 )→ O(n, 1)

take an isometry x 7→ Ax + b to its “linear part” A.
Then

ρ(γ)x = L(ρ(γ))x+ tγ

where t : π1(M) → Rn+1
1 is a 1-cocycle called the

translational part of ρ. The cocycle condition means
that for every α, β ∈ π1(M) we have

tαβ = tα + L(ρ(α))tβ .

The examples from the previous slide are those for
which L maps π1(M) isomorphically to the lattice Γ
and tγ = 0 for all γ ∈ π1(M). With a little more work
one gets:

Prop’n If dimH1(Γ,Rn+1
1 ) = k then we get a k-

dimensional family of spacetimes embedded in Λ(M)
whose holonomy groups have non-trivial translational
parts.



Cohomology Calculations, part 1

Group cohomology of an SO(n, 1) lattice Γ with Rn+1
1

coefficients arises in a related context: the study defor-
mations of Γ in SO(n+1, 1). For a familiar dimension
like n = 2 we are talking about deforming a Fuch-
sian group in SO(2, 1) into quasi-Fuchsian groups in
SO(3, 1).

You can think of a tangent vector to a curve of rep-
resentations as an assignment c : Γ → so(n + 1, 1)
of a Lie algebra element to each element of Γ telling
it “which direction to go”. This assignment needs to
transform in the correct way:

c(αβ) = c(α) + αc(β)

which is the cocycle condition again. Coboundaries
correspond to curves of representations gotten by con-
jugation.

Upshot: first-order deformations of Γ into SO(n+1, 1)
are given by cohomology classes in H1(Γ, so(n+1, 1)).

Recall that a flat conformal structure on Mn is de-
fined by charts into Sn with transition functions in
Mob+(Sn) = SO(n + 1, 1)0. Thus these cohomology
classes also represent first order deformations of M ’s
flat conformal structure (by the holonomy theorem).



Cohomology Calculations, part 2

Where does Rn+1
1 come in? As a Γ-module, the Lie

algebra splits:

so(n+ 1, 1) ∼= so(n, 1)⊕Rn+1
1

and therefore so does the cohomology

H1(Γ, so(n+ 1, 1)) ∼= H1(Γ, so(n, 1))⊕H1(Γ,Rn+1
1 ).

For n = 2, each of the terms on the right hand side
is 6g − 6 dimensional where g is the genus of M2 (the
first piece is tangent to Teichmüller space). It turns
out that the constructions given earlier give all flat
(2 + 1)-spacetimes and so the moduli space is exactly
12g − 12 dimensional. Later we will give a geometric
parameterization of this space in terms of Teichmüller
space Teich and measured lamination space ML.



Cohomology Calculations, part 3

For closed hyperbolic n-manifolds Mn, n ≥ 3, we have
from Mostow rigidity (or local rigidity - Calabi/Weil)

H1(Γ, so(n, 1)) = 0

and so

H1(Γ, so(n+ 1, 1)) ∼= H1(Γ,Rn+1
1 ).

Upshot: We can deform the flat spacetime M×R with
holonomy Γ if and only if we can deform Γ to first
order in SO(n+ 1, 1) if and only if M ’s flat conformal
structure deforms to first order.



Bends and non-bends

Most known constructions of deformations come from
“bending” along an embedded, totally geodesic, co-
dimension-one surface or some variant thereof. Many
people have contributed to this: Thurston, Apanasov,
Johnson-Millson, Kourouniotis, Kapovich, Tan. The
first “non-bends” were found by Misha Kapovich and
come from reflection groups.

Here are some other examples of non-bends: the n-fold
cyclic branched covers of the figure-eight knot n ≥ 4
(the “Fibonacci manifolds”) satisfy H1(Γ,R4

1) 6= 0.
These manifolds have zero first Betti number; in fact
the 4-fold cyclic branched cover is non-Haken and con-
tains no immersed totally geodesic surfaces.

Conversely, Misha also gave the first examples of closed
hyperbolic 3-manifolds admitting no deformations in
SO(4, 1). They are obtained by Dehn filling on hy-
perbolic two-bridge knots; I have recently extended
his argument to work for surgeries on a wider class of
cusped 3-hyperbolic manifolds.



Some answers, de Sitter case

Question II is answered in the de Sitter case by the
following (all dimensions in fact):

Theorem The moduli space of de Sitter spacetimes
Λ(M) is parameterized by flat conformal structures
on M .

When M is a surface, a flat conformal structure is
the same thing as a complex projective structure since
S2 = CP 1 and the (orientation-preserving) Möbius
group is PSL(2,C). In particular, all surfaces admit
such structures and a lot is known about the defor-
mation spaces – there is a complex analytic parame-
terization via holomorphic quadratic differentials and
also a geometric parameterization due to Thurston in
terms of grafting (my other talk).

In higher dimensions, there are topological obstruc-
tions to having a flat conformal structure. For in-
stance, Nil or Solv torus bundles over S1 do not ad-
mit such structures. It is not known exactly which
3-manifolds admit Möbius structures, even assuming
the geometrization conjecture (though much is known
due to Goldman, Kapovich, Luo, et al).



Some answers, 2 + 1 case in general

For simplicity I will focus on the flat and de Sitter
cases. If M is a hyperbolic surface, it turns out that up
to a time reversal, a maximal spacetime M×R is past
complete but future incomplete. The future causal
horizon has the structure of an R-tree dual to some
measured lamination; the spacelike slices converge to
a point of Teich in the past. The main result is that
spacetimes are parameterized by this data at past and
future infinity (the flat case was done originally by
Geoff Mess in 1990):

Theorem Let M2 be a closed hyperbolic surface. In
both the flat and de Sitter cases, Λ(M) is parameter-
ized (in this special way) by Teich×ML.

Corollary (no topology change) Any 3-dimensional
spacetime of constant curvature is homeomorphic to
M2 × [0, 1].

Idea of the proof of Corollary: The theorem describes
precisely the structure of the causal horizon, and as
before, it suffices to show that the spacetime cannot
evolve past this horizon, or equivalently that the holon-
omy ceases to be discontinuous (to be honest, it does
evolve past the horizon in some trivial cases, but with-
out ruining the product structure).



3 + 1-dimensions

The key step in the 2 + 1-dimensional case was finding
the R-tree in the future causal horizon. In the 3 + 1-
dimensional case, little is known about the structure
of this horizon when it is not an R-tree.

Open question What are the possibilities for the
structure of the causal horizon when M is a closed
hyperbolic 3-manifold and M ×R comes from a class
in H1(M,R4

1)? The case of the Fibonacci manifolds
mentioned earlier is particularly mysterious to me.

At least there is an answer to question I for the case
of flat (3 + 1)-spacetimes:

Theorem M3 is a spacelike slice of a flat spacetime if
and only if M3 is modelled on H3, E3, or H2 ×R.


