

Unicode for Linguists

Kevin Scannell
INNET Summer School

Gniezno, Poland
4 September 2013

Encoding basics

● Encoding: a mapping characters ↔ numbers
● Computers are good at storing numbers!
● Encodings don't care how chars are input
● Also not concerned with how they're displayed
● No fonts, formatting, boldface, etc. – just text!
● “Modularity”; three independent layers
● Confusion in part b/c it was not always so
● (keyboards and fonts bundled together)

Fonts

● Again, correctly-encoded text stands on its own
● Sure, fonts let you to render text on the screen
● But you have good wide-coverage fonts already
● There are some exceptions of course:
● I I I I I I I I I I I I I I I I
● And some fonts are buggy...
● Especially stacked diacritics, ligatures

The Joy of Text

● Unicode encodes “plain text” (and no more)
● Plain text is portable across platforms
● Plain text is long-lived
● Plain text is the ultimate “open” format
● Plain text is indexed by Google, “discoverable”
● No proprietary tools needed to manipulate text
● Plain text is easily viewable, editable
● Allows you to bring powerful Unix tools to bear
● Even marked-up text like XML counts!

Encodings: Some History

● ASCII (1963); A-Za-z, 0-9, etc., map to 0-127
● EBCDIC (1964); mapping to 0-255 (w/ gaps)
● ISO 8859 series (1987-); 0-255, extend ASCII
● Big5 (1984); traditional Chinese
● Shift JIS; Japanese
● GB2312/18030; simplified Chinese
● Literally hundreds of others
● Why was this so terrible?

Alphabet soup
IBM1124, CP424, ISO_10367-BOX, ECMA-128, ISO8859-1, KOI-7, CSIBM1137, EBCDIC-GREEK, ISO-IR-99, GOST_1976874,
CSISOLATINCYRILLIC, CP901, IBM933, IBM-1142, CP1026, IBM4909, UTF32BE, CSISO19LATINGREEK, CSIBM4971, MS-
GREEK, MAC, ISO_8859-10:1992, TS-5881, WINBALTRIM, IBM-1161, NF_Z_62-010, CSIBM420, CSISO89ASMO449, CP1144,
ISO_6937-2, CP-AR, CP281, T.61-8BIT, EUCTW, CSIBM500, ISO-IR-141, INIS, CP10007, IBM16804, PT2, ISO-8859-13, IBM12712,
IBM-1162, CSISO86HUNGARIAN, SHIFT_JIS, CUBA, ISO-IR-138, EBCDIC-ES-S, ISO-IR-4, ISO_8859-2:1987, OSF10020359,
EBCDIC-CP-FI, CP1251, ISO_8859-4:1988, ISO-IR-103, GB18030, EBCDICATDE, OSF00010020, CSPC862LATINHEBREW,
ISO_8859-14, 8859_5, CSISO5427CYRILLIC, CSA_T500-1983, EBCDIC-CP-WT, EBCDIC-IS-FRISS, CSIBM1364, CP274,
ISO885914, EBCDIC-CP-AR1, IBM1132, CSIBM863, CSIBM1123, BIG-FIVE, ISO8859-2, 904, IBM1129, ISO-8859-11, SE,
CSIBM1026, CP285, UTF16LE, IBM1141, CSIBM297, CP1097, IBM856, IBM277, 1046, NF_Z_62-010_1973, HPTHAI8,
CSISO15ITALIAN, CP1141, IBM-1147, CSIBM902, IBM1026, CP819, ISO-8859-9E, CSIBM1129, EBCDICDKNO, CP937, WINDOWS-
31J, ARMSCII-8, EBCDIC-AT-DE, ISO_8859-7:1987, IBM9448, CP4909, GB_1988-80, CP278, DECMCS, IBM273, 8859_7,
NC_NC00-10:81, EBCDIC-CP-SE, IBM1160, CSISOLATIN2, IBM-1166, OSF10020365, IBM1388, OSF10020111, RK1048, ISO88598,
CSISO150GREEKCCITT, CP9448, ISO-IR-69, BIG5, IBM904, ASMO_449, CSISOLATIN4, MACUK, CSISO122CANADIAN2,
CSIBM1148, ISO2022CN, IBM866NAV, CSIBM903, ASMO-708, CP1004, IBM1158, CP297, CSISO141JUSIB1002, CP437, MS-EE,
CP771, CP1255, IBM1143, CP772, DEC, OSF1002035D, DS2089, MSCP949, ISO-2022-JP-2, TIS-620, ISO88592,
CSISO27LATINGREEK1, CP1161, DE, 855, ISO-2022-JP-3, CP1256, CSIBM11621162, CP1390, MS-TURK, NATSDANO, CP500,
1026, IBM1137, IBM284, ISO885916, OSF10020352, CSIBM1390, IBM1163, ES2, ISO_8859-5, CP1160, HPGREEK8, IBM-933,
MACINTOSH, UCS4, CP891, LATIN3, CSISO69FRENCH, CP949, IBM-1124, EBCDIC-AT-DE-A, CSISOLATIN5, NAPLPS, IBM868,
EUCCN, INIS-8, CSIBM939, ISO885913, CSIBM860, ISO-IR-86, NF_Z_62-010_(1973), ISO8859-7, ANSI_X3.110, ISO-IR-89,
CP1364, ISO_8859-9, JIS_C6229-1984-B, ISO_8859-3:1988, CP903, MAC-UK, 437, CSIBM866, WINDOWS-1258, ISO646-CA2,
CP939, OSF10020354, KOI8R, CSA7-1, IBM-1122, CP4517, IBM855, ISO_6937-2:1983, GEORGIAN-PS, CSIBM935, UCS-2LE,
IBM-16804, CP1081, IBM-1163, CP1124, LATIN10, WINDOWS-1257, CP874, IBM916, ISO_9036, CSIBM803, ISO8859-5, IBM-1046,
CSIBM1097, EBCDIC-CP-CA, ISO_69372, CSISO60DANISHNORWEGIAN, OSF10020115, CSEBCDICFISE, EBCDIC-JP-KANA,
CP1282, CSIBM1112, IBM874, IBM-1143, BALTIC, CSIBM1025, INIS8, EBCDIC-CP-NO, CP902, BIG-5, CP1254, CSIBM855,
EBCDICESA, JP-OCR-B, TCVN5712-1:1993, ISO646-FR1, TSCII, IBM-9066, CSIBM1132, ISO2022JP2, EBCDICDKNOA, IBM1164,
IBM4517, UTF-16BE, CP1025, ISO-IR-111, IBM-4971, SJIS-WIN, MAC-CENTRALEUROPE, CP1137, IBM-1008, CSMACINTOSH,
EBCDIC-CP-CH, CP905, CP273, VISCII, OSF00010008, ROMAN9, IBM-9448, OSF0001000A, 864, ISO_8859-10, IBM857, LATIN9,
OSF10020357, ISO-IR-37, CSIBM273, EBCDIC-CP-HE, LATIN6, ISO88591, CSIBM1164, TIS620.2529-1, CSISO143IECP271, ISO-
8859-9, CSIBM1399,

Massive ambiguity

● Character á maps to 225 under ISO-8859-1
● But 225 is ß in CP770 encoding
● And it's Cyrillic es (с) in CP771

● And Arabic Lam (ل) in CSIBM9448

● And Thai Sara Ae (แ) in IBM-1161

● And į (lowercase i with ogonek) in ISO-8859-13
● And...

Multilingualism

● No single encoding covered many scripts
● Multilingual documents were impossible
● Thumb drive contains randomsample.txt

● One random sentence in each of 1500+ langs
● Completely impossible 20 years ago!

Gaps

● Many scripts had no encoding at all
● Individuals invented “ad hoc” encodings
● Occasionally, just a few characters missing
● e.g. Welsh uses ISO 8859-1 + ŵ, ŷ
● Solution: create a new encoding! (ISO 8859-14)
● Mongolian uses standard Cyrillic + ө, ү
● Solution: “font tricks”; font redraws є, ї as ө, ү
● Or fonts that redraw everything (e.g. Cherokee)

Unicode!

● First efforts at a universal encoding, late 80's
● Unicode Consortium, ISO, 1991-1992
● First version 1.0.0 in Oct. 1991, 7161 chars
● Current version 6.2 (Sept. 2012), 110182 chars!
● Again, each char is assigned a number
● These numbers are called “code points”

Ambiguity solved

● Character á still maps to code point 225
● ß maps to code point 223
● Cyrillic es (с) maps to 1089

● Arabic Lam (ل) maps to 1604

● Thai Sara Ae (แ) maps to 3649

● į (lowercase i with ogonek) maps to 303

Digression on binary/hex

● So á is 225, but you usually see U+00E1

● แ is 3649, but usually written U+0E41

● Computers store numbers in binary, “base 2”
● 225=128+64+32+1=11100001
● 3649=2048+1024+512+64+1=111001000001

Hexadecimal vs. binary

● 0 = 0000
● 1 = 0001
● 2 = 0010
● 3 = 0011
● 4 = 0100
● 5 = 0101
● 6 = 0110
● 7 = 0111

● 8 = 1000
● 9 = 1001
● 10 = 1010 = “A”
● 11 = 1011 = “B”
● 12 = 1100 = “C”
● 13 = 1101 = “D”
● 14 = 1110 = “E”
● 15 = 1111 = “F”

Serialization

● “Bits” are binary digits, 0 or 1
● Computer memory divided up into 8-bit chunks
● “Bytes” or “octets”
● 0...255, or 00000000...11111111, or 00...FF
● How do we represent Unicode as bytes?

● Q: Can we store áßсلแį using each code point?

● → 00 E1 00 DF 04 41 06 44 0E 41 01 2F

UTF-16

● Answer: Almost!
● This was essentially the original design
● But, 2 bytes per char allows only 65536 chars
● Code points up to 10FFFF = 1,114,111
● There's a trick for stuff > 65535; more later...
● Also, UTF-16 is inefficient for mostly-ASCII text
● “Kevin” in ASCII: 4B 65 76 69 6E
● In UTF-16: 004B 0065 0076 0069 006E

UTF-8

● Another way to represent Unicode as bytes
● THE way; de facto standard on most computers
● ASCII (0...7F) encoded as themselves, 1 byte
● 0080...07FF encoded as 2 bytes (non-trivially!)
● 0800...FFFF encoded as 3 bytes each
● Others as 4 bytes each

A Mystery Explained

● Co słychać? Co sÅychaÄ? Co sĹychaÄ?
● ł is U+0142
● Serialized as UTF-8, it's two bytes C5 82
● Interpreting these as bytes in ISO 8859...
● C5 is Å in ISO 8859-1, Ĺ in ISO 8859-2
● 82 is unassigned in both cases
● Either “doubly-encoded”, or ISO 8859 viewer

Digression: how does UTF-8 work?

● How do I know the bytes C5 82 mean U+0142?
● C = 1100, 5 = 0101, 8 = 1000, 2 = 0010
● So bit stream is 11000101 10000010
● “110” at beginning says character is two bytes
● Throw this out, and the “10” at start of 2nd byte
● Leaves 00101000010.... that's 0142 in hex!!
● Similarly for three, four octet sequences

Ambiguity of another kind

● Sometimes multiple ways to represent one char
● Å =U+212B=ANGSTROM SIGN

● Å = U+00C5=LATIN CAPITAL LETTER A WITH RING ABOVE

● Å can also be encoded as U+0041 followed by U+030A

● LATIN CAPITAL LETTER A, COMBINING RING ABOVE

● U+00C5: “precomposed form”, U+030A: “combining diacritic”

● Can cause problems with search, frequency lists, etc.

● We'll talk about “Normalization Forms” later, given time

Demo

● http://borel.slu.edu/pub/innet.html
● That's U+212B, U+00C5, U+0041, U+030A.
● Copy the first char, then search (Ctrl+F) for it
● Repeat, copying 2nd, then 3rd chars.
● Change browsers and try again (!)
● Search merges (often desirable), inconsistently
● More dangerous: sometimes silently changed
● e.g. copy and paste, depending on platform/app

http://borel.slu.edu/pub/innet.html

Character Properties

● Letters: a,A,Æ,ð,ƕ,ǂ,ʃ,Σ,ম,ထ, ᇱ ,Ꭹ,ᑒ, め ,㒈

● Numbers: 0,1,2,۵,۶,३,४,౽,༰,⅑,Ⅶ,⑤

● Punctuation: !,?,॥,෴,๛,༊, ᙭,᚜
● Symbols: £,±,©,⇏,∇,╝,♻,✅,
● Marks (combining diacritics, vowel marks)

What's missing?

● See http://scriptsource.org/
● 241 scripts listed in total
● 163 listed in ISO 15924
● 102 scripts in Unicode 6.2
● Info on pending proposals from scriptsource, or:
● http://www.linguistics.berkeley.edu/sei/alpha-script-list.html

● Bassa Vah, Duployan, Elbasan, Khojki, Khudawadi, …

http://scriptsource.org/
http://www.linguistics.berkeley.edu/sei/alpha-script-list.html

What about my language?

● Typical use cases:
● Convert legacy texts to UTF-8
● Fix miscoded files
● Create UTF-8 text from offline notes, images

Inspecting code points

● If you have existing Unicode text in your lang...
● Best approach is to use Unix tools (workshop)
● Can inspect and also modify/correct texts
● Quick online solution for inspecting code points
● http://rishida.net/tools/conversion/
● But beware of cutting and pasting!

http://rishida.net/tools/conversion/

Unicode font tricks

● Unicode isn't immune from font tricks
● http://www.babel.gwi.uni-muenchen.de/media/downloads/SzOCh_FUT_20110721.pdf

● Khanty language texts, Finno-Ugric Transcript.
● p.43, 2nd line: atiʌnam atəm wăʌtaγə
● Cut and paste: ati>nam atõm wâ>taqõ

http://www.babel.gwi.uni-muenchen.de/media/downloads/SzOCh_FUT_20110721.pdf

Your language in Unicode

● How should I represent my texts in Unicode?
● Is there a writing system? If not, create one!
● Decide on correct Unicode chars
● Unicode charts, or http://shapecatcher.com/
● May require use of combining characters
● If not all chars are available, propose new ones
● Sound easy?

http://shapecatcher.com/

Confusables!

● http://www.unicode.org/Public/security/revision-02/confusables.txt

● A = U+0041 = LATIN CAPITAL LETTER A

● Α = U+0391 = GREEK CAPITAL LETTER ALPHA

● А = U+0410 = CYRILLIC CAPITAL LETTER A

● ᗅ = U+15C5 = CANADIAN SYLLABICS CARRIER GHO

● Ꭺ = U+13AA = CHEROKEE LETTER GO

● …

● How to find and fix incorrect characters in existing texts?

● How to make the right choice? ɨ → i̵ (U+0268 vs. U+0069, U+0335)

http://www.unicode.org/Public/security/revision-02/confusables.txt

Apostrophe Hell

● 'ˈ´ʹʻʼʽʾˊˋ˴ʹ΄՚՝᾽᾿´῾‘’‛′‵ꞌ ＇｀
● Even an issue for English! Kevin's or Kevin’s?
● Hawaiʻi, Hawai'i, Hawai`i, Hawai‘i, Hawai’i
● All of these appear in real texts on the web
● Correct one: U+02BB (semantics, typography)
● Ꞌ =U+A78C=LATIN SMALL LETTER SALTILLO
● Used for indigenous languages in C. America
● Choice based on history (SIL) and typography

Normalization Forms

● NFC vs. NFD
● Indexing for search
● Twitter 140 count uses NFC

Special Characters

● U+FEFF (ZWNBSP a.k.a. BOM)
● U+FFFD � (replacement character)
● U+200C,U+200D (ZWNJ, ZWJ)
● U+200E,U+200F (LTR, RTL)

Keyboard resources

● http://www.tavultesoft.com/keyman/

● http://keymanweb.com/

● http://msdn.microsoft.com/en-us/goglobal/bb964665.aspx

● http://scripts.sil.org/cms/scripts/page.php?item_id=ukelele

http://www.tavultesoft.com/keyman/
http://keymanweb.com/
http://msdn.microsoft.com/en-us/goglobal/bb964665.aspx
http://scripts.sil.org/cms/scripts/page.php?item_id=ukelele

Know your bytes!

● “Unix for Poets” – great tutorial by Ken Church
● http://www.stanford.edu/class/cs124/kwc-unix-for-poets.pdf

● “Better to do something simple than nothing at all”

● “DIY is more satisfying than begging for help”

● Here's my own tutorial, for linguists:
● http://borel.slu.edu/pub/innet.html
● Programming via pipelines
● Filter (grep), map (sed), reduce (wc, etc.)

http://www.stanford.edu/class/cs124/kwc-unix-for-poets.pdf
http://borel.slu.edu/pub/innet.html

