
Unix Tools
Lecture Notes

Kevin Scannell and John Paul Montano

Contents
Lecture 1. Introduction, command-line basics, how to win your Super Bowl pool
Lecture 2. Pipeline programming, regular expressions
Lecture 3. Real-world text analysis
Lecture 4. Modifying text with sed
Lecture 5. Scraping HTML without parsing; CSV and JSON files
Lecture 6. Processing CSV with cut, paste, and join
Lecture 7. Aligning parallel texts, dealing with noisy data
Lecture 8. Our first shell script
Lecture 9. Defining your own pipeline commands; higher-order programming
Lecture 10. Version control with git
Lecture 11. Makefiles and make
Lecture 12. Palindrome-finding contest
Lecture 13. Traditional programming constructs: loops and variables
Lecture 14. Non-linear processing
Lecture 15. Unicode for Unix hackers

Lecture 1.

Before anything else, you should install Linux on your own computer. When this course was
first offered at Saint Louis University in 2014, the students were able to use accounts on a
university Linux server (turing.slu.edu) via an ssh client, but most of them chose to run Linux as
their day-to-day operating system during the semester. This is by far the best choice and the
fastest way to learn. On a Windows computer you can do any of the following:

● Dual boot Linux/Windows
● Run Linux through a VM
● Cygwin

A Mac is, roughly-speaking, “Unix under the hood”. You can open the Terminal app and access
a Unix command line, and do most of what we want in this course. Unfortunately, the default
Unix tools that come on a Mac, while broadly compatible, are somewhat different from the ones
on most Linux systems (Mac uses the so-called “BSD” tools, Linux distros use the “GNU” tools).
Fortunately, it’s pretty easy to install the GNU tools on a Mac.

Unix is an operating system, created at Bell Labs (AT&T) in the late 60’s, early 70’s. It came out
of an earlier effort (MIT, GE, Bell Labs) to develop a time-sharing operating system called

http://www.topbug.net/blog/2013/04/14/install-and-use-gnu-command-line-tools-in-mac-os-x/

MULTICS. There were all sorts of problems with MULTICS, so the AT&T people pulled out of
the joint effort, and created Unix. (Get it?). The main drivers were Ken Thompson and Dennis
Ritchie.

The history since then is a long and sordid one not worth getting into now. Basically, through
the 80’s and 90’s there were lots of commercial vendors selling a variety of “Unix-like” operating
systems. In 1991, Linus Torvalds started working on an open source version of Unix that would
run on commodity PCs. This is the version of Unix that would become “Linux”.

Open source is a big part of the culture of the Linux world and the software development that
goes on around it. Everything we use on a typical Linux system is free software. We’ll talk later
about doing development on github as a way of sharing your work with others and collaborating
with people who are perhaps far away.

We’ll start by going over some of the basics of how to use the command-line (navigating the file
system, creating, copying, removing files, etc.) but will do so quickly so we can get to the real
content of the course.

In all of the examples below, we’ll write a $ to represent the command-line prompt. So, for
example, the command for listing the files in the current directory looks like this:

$ ls

The important point for true beginners is that you only need to type the ls (and then press Enter
or Return) because the dollar sign is just the prompt. It’s also important to be aware that, in
practice, this prompt will look different on different systems, depending on your configuration.
For example, it’s common that the prompt displays the name of the directory you’re in, e.g.

data$ ls

or sometimes also your username and the name of the server:

kscanne@turing:~$ ls

The “command-line” or “terminal” is really a program that accepts input from the keyboard,
interprets it as one or more commands, executes those commands, and displays any output.
This program is called a “shell”, and the dominant shell (and the one you’ll use by default on
Linux unless you try hard not to) is “bash”. (This is another joke – it’s the “bourne again shell”
since it’s an improvement of the earlier Bourne shell).

Commands you enter, like ls, are really the names of (usually little) programs. They typically
have short, obfuscated names because we have to type them a lot – be thankful! Everything is
case-sensitive.

Read-only navigation commands for exploring the filesystem:

$ ls
$ ls -l

The second example is typical; programs often take “command-line options”; these usually
consist of a hyphen and a single letter, like the “-l” in the second example.

Show the present working directory:

$ pwd

Go into the subdirectory named “xyz”:

$ cd xyz

Go to my home directory:

$ cd

There are special shorthand filenames that you can use when navigating your filesystem. For
example, “..” always refers to the parent directory of the current directory. So, this command
takes you up to the parent directory:

$ cd ..

Similarly, “.” is shorthand for the current working directory. “cd .” therefore has no effect. But,
the single dot is very useful in other contexts, e.g. copying things to the current directory.

A tilde ~ is shorthand for you home directory. So

$ cd ~

has the same effect as

$ cd

Most of the commands we’ve introduced here have lots and lots of complicated command-line
options (that, honestly, are rarely used in practice). You can learn about these, or about how to
use any other Unix tools, by reading the manual page for a particular command:

$ man ls
$ man pwd

etc.

Ok, now we enter the danger zone and learn some commands that actually change your
filesystem. BEWARE: Unix is notoriously unforgiving. If you delete a file using the
command-line tools, the file’s gone forever. No “recycle bins”. No tears. Toughen up.

To create a new subdirectory of the current directory:

$ mkdir data

And then go into the new directory:

$ cd data

You can create a new, empty file called file.txt as follows:

$ touch file.txt

If the file exists already, then touch just updates its “last modified” timestamp, which is
sometimes useful.

Remove file X:

$ rm X

Copy file X to Y:

$ cp X Y

Move (rename) file A to B:

$ mv A B

Move file A into directory dir (the slash is optional):

$ mv A dir/

You can also create a new file by “redirecting” output of a command into a file; for example:

$ ls > file.txt

We’ll do a lot of this in the lectures that follow.

Or, you can use a text editor.

$ vim
$ emacs

Pick one.

Sometimes the output of a shell command will contain many lines and scroll off the top of the
screen; e.g. if you use ls as above, and a directory contains many files. A nice way to “slow
down” the output is to pipe it through the Unix tool more:

$ ls | more

Pressing the spacebar moves one page down in the output. Pressing Enter moves down one
line. And, “q” stops the output and returns you to the command line. There’s a similar command
less that has some additional functionality as well. In many of the examples throughout these
lectures, you’ll find it useful to pipe the output through more or less in this way, but we’ll leave
that up to you in specific examples.

Finally, a couple of indispensable tricks when working at the command line:

First, you can use the up- and down-arrows to navigate backward and forward through the
history of commands you’ve typed into the current session. You’ll use the up-arrow extensively
while experimenting with the examples in these notes, and in constructing commands of your
own.

Second, in many contexts one is able to use the tab key to auto-complete commands or
filenames at the shell prompt. For example, if there is a file data.txt in the current directory,
and no other files beginning with the letter “d”, then you can simply type:

$ touch d

and then press tab, and the rest of the filename will autocomplete.

The one other thing you’ll need to work through this course is a set of example files, which is
available here:
https://kevinscannell.com/files/examples.zip

https://kevinscannell.com/files/examples.zip

You can download and open the zip file all from the command line:

$ wget https://kevinscannell.com/files/examples.zip
$ unzip examples.zip
$ cd examples
$ ls

Let’s start with a cool example that will illustrate the power of the techniques we’ll learn in this
course. If you’ve ever been to an American Super Bowl party, you may have participated in a
“Super Bowl Square” pool. This is a 10x10 grid, with rows and columns labelled with the digits
0...9. Everyone pays an entry fee and gets to choose some number of squares in the grid,
usually by writing their initials in the squares. At the end of the game, you take the last digit of
the two teams’ scores and that determines the row/column of the winning square. You too can
win Super Bowl Squares more often than chance, THANKS TO THE UNIX TOOLS. Let us
explain.

You’ll find a file called nfl96.dat.txt in the examples folder (original source:
http://www.amstat.org/publications/jse/datasets/nfl96.dat.txt) that contains American football
scores for the 1996 season. Here’s how you can quickly find the best squares to choose at your
next Super Bowl party:

$ cat nfl96.dat.txt | sed 's/^ *//' | sed 's/^[^]* *//' |
sed 's/ */\t/g' | cut -f2,4 | sed 's/^[0-9]*\([0-9][^0-9]\)/\1/' |
sed 's/\([^0-9]\)[0-9]*\([0-9]\)$/\1\2/' | sort | uniq -c |
sort -k1,1 -r -n

This may look complicated, but it’s really not. For now, don’t worry about the details; what’s
important is the philosophy of the Unix tools and programming using pipelines. We came up
with the code above one step at a time:

$ cat nfl96.dat.txt

This just dumps the original file to the screen

$ cat nfl96.dat.txt | sed 's/^ *//'

This dumps the same file, but modified slightly (removes any leading spaces from each line).
The vertical bar is a “pipe”; the idea is that the output of the first program (everything to the left
of the pipe) is sent through the pipe and becomes the input to the next program. The power
comes when you string together many programs with pipes:

http://www.amstat.org/publications/jse/datasets/nfl96.dat.txt

$ cat nfl96.dat.txt | sed 's/^ *//' | sed 's/^[^]* *//'

This further removes the date from the beginning of each line. And so on…

After executing the full command, the first few lines of your piped result should look as follows:

12 0 4
11 0 7
10 4 7
9 3 7

...

The first line of our piped result (i.e., “12 0 4”) indicates that the final digit of each of
the two football teams’ scores (0 and 4 in this case) appear most often. 12 times, to be exact.
The second line of our piped result (i.e., “11 0 7”) indicates that the football teams’
respective final digits, 0 and 7, appear next most frequently. A total of 11 times, in this case.
And, so on.

We recommend reproducing the long command above one step and a time, and trying to figure
out what each piece of the pipeline is doing. Don’t forget to use the up-arrow to minimize
retyping. A single shell command made up of a long pipeline like the one above is called a
“one-liner”.

The philosophy is that you have some input data (the original file with the scores) and you’d like
to modify it into some output data (a sorted list of the best squares for the Super Bowl pool).
You can get from the input to the desired output one small step at a time. The Unix tools like
sed, cut, sort, and uniq in this example make it easy to do this.

Get used to experimenting. A good bit of text-processing with “real world” data involves some
trial-and-error. A typical process is to add a command to the end of a pipeline and examine the
output. If it worked the way you expected, you can press the up-arrow at the shell prompt to
retrieve the command you just used, and add more commands if needed. If it didn’t work the
way you wanted, you can again use the up-arrow and tweak the command until you get it right.

Lecture 2.

Recall that the kind of text-processing we did last time is called “pipelining” or “pipeline
programming”. This is the fundamental idea in this whole course. Once you’re good at this,
you’ll tend to think about all programming problems in the same way.

Principles:
● Everything we do is processing a stream of plain text.
● We initiate a stream somehow, often from an existing file.
● Streams are (almost) always processed line-by-line. This is critically important to

understand. All of the so-called Unix Tools are designed to work on one line of text at a
time.

● The stream is “piped” through one or more Unix Tools (sometimes called “filters”, but we
prefer the more refined terminology below) until the stream looks the way we want it to.

Pipelines have been part of Unix almost since the beginning. There’s a great interview with
Doug McIlroy, the head of the department at Bell Labs where Unix started, which explains how
pipelines came to be, and how their implementation was followed (the very next day) by an
“orgy of one-liners.” We’ve reproduced an excerpt at the end of these notes in an appendix
since it echoes very nicely some of the general Unix philosophies that we’re trying to convey in
these lectures.

There are three kinds of tools, roughly speaking:

● Mappers, which modify lines in the stream in some way
● Filters, which keep only certain lines of the stream
● Reducers, which “accumulate” or “collapse” the stream to a result

If you know something about Google’s “Map-Reduce” architecture, or if you’ve studied the bits
about stream processing in SICP, you’ll understand the choice of terminology here.

To get started, we’ll need a plain text file to work with. There’s a file en.txt in the examples
folder which contains a list of about 100,000 English words. There appears one English word
on each line of the file. (A slightly modified version of the file can be found here:
http://www-01.sil.org/linguistics/wordlists/english/wordlist/wordsEn.txt)

We’ll almost always create a stream using the program cat, which simply dumps the contents
of the file to the terminal:

$ cat en.txt

If you just want the first 100 lines of the file, you can get them using the Unix tool head:

$ head -n 100 en.txt

Alternatively, you can create the stream using cat and then use head as a filter in the sense
above using the pipe symbol “|”:

http://www.princeton.edu/~hos/frs122/precis/mcilroy.htm
https://mitpress.mit.edu/sicp/full-text/book/book.html
http://www-01.sil.org/linguistics/wordlists/english/wordlist/wordsEn.txt

$ cat en.txt | head -n 100

This pipeline has the same effect as the previous command. Even though it’s more typing (and
possibly slightly slower), we prefer to use cat at the beginning of pipelines since it better
illustrates the general philosophy here: create streams of text from files, and then apply a
sequence of mappers, filters, and reducers which all read from standard input and write to
standard output. We do this in our everyday lives, and will also do it in the notes that follow.

Similar to head, the filter tail keeps only the specified number of lines at the end of the
stream:

$ cat en.txt | tail -n 100

The filter tac reverses a stream:

$ cat en.txt | tac

(Again, most people would just type tac en.txt, but I’m weird).

And, shuf is a Unix tool that reads in lines of text, randomizes them, and outputs them:

$ cat en.txt | shuf

Next, let’s apply the Unix tool egrep as a filter. It keeps only the lines that “match” the pattern
that was provided; in this case any word containing the substring “good”:

$ cat en.txt | egrep 'good'

Here’s the thing... you can match patterns that are much more complicated than fixed strings
like “good”. And, this is where the real power comes in; by choosing these patterns well, you
can select exactly what you want from the text stream in quite sophisticated ways. These
patterns are called “regular expressions”, and there’s an extensive (and beautiful) theory of finite
state automata, worked out in the 1940’s and 1950’s, that describes the sets of strings that can
be matched by regular expressions. And, the best part is that these theoretical results and
algorithms underlie the actual implementations of Unix tools like egrep, and explain why they’re
so fast!

Before we get into this too deeply, if you have some familiarity with Unix you may have heard of
the tool grep, which very much like the egrep we’re using here. egrep stands for “extended
grep” and it uses a somewhat more convenient syntax for describing regular expressions
(more on this momentarily). So you can simplify your life by just sticking with egrep even in
cases where the behavior would be the same. (And, if you’re curious what grep stands for, you

can check out the Wikipedia article).

Examples of regular expressions:

Maybe you’ve heard the rule “i before e, except after c.” Let’s prove that it’s false:
$ cat en.txt | egrep 'cie'
$ cat en.txt | egrep '[^c]ei'

The pattern [^c] means “any single character other than c.”

Square brackets without a caret (^) in a pattern mean “exactly one of any of the characters
inside the brackets.” So, you can find words with three (or more!) vowels in a row as follows:

$ cat en.txt | egrep '[aeiou][aeiou][aeiou]'

Curly braces can be used to indicate a desired number of repetitions. There are a handful of
words in English (like “queueing”) with five consecutive vowels. We can find them like this:

$ cat en.txt | egrep '[aeiou]{5}'

How about long sequences of consonants (e.g., “latchstring”)?

$ cat en.txt | egrep '[^aeiouy]{6}'

A range of numbers is allowed inside the curly braces:

$ cat en.txt | egrep '[^aeiouy]{5,7}'

For Scrabble players:

$ cat en.txt | egrep 'q[^u]'

A period/full-stop (.) in a pattern matches any single character:

$ cat en.txt | egrep 'z.z'

An asterisk in a pattern is called a “Kleene star”; it means “match 0 or more of the preceding
pattern.” So, this first example will give words with consecutive k’s, or with k’s separated only by
vowels:

$ cat en.txt | egrep 'k[aeiou]*k'

Sometimes you want “one or more” of a pattern. You could write [aeiou][aeiou]* to get

https://en.wikipedia.org/wiki/Grep

one or more vowels, but this is common enough that there’s a special notation for it; a plus sign
instead of an asterisk:

$ cat en.txt | egrep 'k[aeiou]+k'

The pattern below will match any line containing a character other than a letter a-z.

$ cat en.txt | egrep '[^a-z]'

You’ll see there are several words that contain an ASCII apostrophe. To this point, we’ve used
apostrophes around the pattern when using egrep, but you can also use double quotes. So, if
the pattern contains an apostrophe, use double quotes, and vice versa. For example, to match
the words containing an apostrophe directly:

$ cat en.txt | egrep "'"

The default behavior is to print any line which contains a match anywhere in that line.

You can require the whole string to match with “beginning of line” and “end of line” anchors:

$ cat en.txt | egrep '^[aeiou]+$'

In a Facebook post a couple of years ago, a colleague observed that not all words ending in
“-ly” are adjectives or adverbs formed by adding “ly” to an existing word in the way that “friendly”
or “gladly” are formed, and gave the (funny) examples “barfly” and “prickly”. You can search for
four- and five-letter examples like this:

$ cat en.txt | egrep '^.{2,3}ly$'

Let’s do our first real pipeline, by adding on additional egreps:

$ cat en.txt | egrep '^anti' | egrep -v "'s$"

Instead of filtering out the lines that don’t match, egrep -v filters out the lines that do match.

You may have heard of the 1939 novel “Gadsby” by Ernest Vincent Wright. There are about
50,000 words in the book, none of them containing the letter “e”. Here are the words Wright
could choose from:

$ cat en.txt | egrep -v 'e'

You can count them by extending the pipeline with the Unix tool wc -l, which outputs the total

number of lines it reads from standard input:

$ cat en.txt | egrep -v 'e' | wc -l

wc is a good example of a “reducer” in the sense we introduced above.

Next, “capturing parentheses”!

The next example finds words that contain the same vowel occurring twice in a row:

$ cat en.txt | egrep '([aeiou])\1'

The idea is that, first, the parentheses “capture” the text that’s matched by the pattern inside the
parentheses. The \1 serves as a “back reference” - to that actual text (e.g., e) and not to the
pattern (e.g., [aeiou]) - that then matches that captured text (e.g, an e versus an a, e, i, or
u). The key thing to understand is why this is different from:

$ cat en.txt | egrep '[aeiou][aeiou]'

which matches an a, e, i, or u followed by an a, e, i, or u; which is quite different from
matching a captured a, e, i, or u, immediately followed by that same captured letter.

The following pattern will match words containing the same vowel three times in a row:

$ cat en.txt | egrep '([aeiou])\1\1'

And, this pattern will look for the occurrence of a consonant appearing three times in a row:

$ cat en.txt | egrep '([^aeiou])\1\1'

This pattern will look for words like “couscous” and “murmur” which are made up of a substring
repeated twice:

$ cat en.txt | egrep '^(.+)\1$'

Since this matches some two-letter words like “cc”, how could you tweak it to discard those?
You could do it by changing the pattern slightly, or by extending the pipeline to filter out the
words you don’t want....

Now, notice that in every case, egrep returns the entire line that matches. Sometimes, you just
want it to print the part of the line that matches. Use the “-o” flag for this:

Find all diphthongs:

$ cat en.txt | egrep -o '[aeiou]{2}'

Then count them:

$ cat en.txt | egrep -o '[aeiou]{2}' | sort | uniq -c | sort -r -n

Or even a character frequency list:

$ cat en.txt | egrep -o '.' | sort | uniq -c | sort -r -n

Or predictive text statistics – what is the character most likely to follow “ca” in English?

$ cat en.txt | egrep -o 'ca.' | sort | uniq -c | sort -r -n

(Incidentally, there are no examples of “caa” or “cax” in this word list – just sort | uniq to
see that). Techniques like this can be used to create predictive text input systems for cell
phones.

What other experiments can you think of?

Simple tutorials: http://regexone.com/
Crossword puzzles: http://regexcrossword.com/
Regex golf: http://regex.alf.nu/ (see also http://xkcd.com/1313/)
The t-shirt: http://store-xkcd-com.myshopify.com/products/i-know-regular-expressions

Lecture 3.

Next, we’ll do a similar statistical analysis of text, but this time using “real” texts which can be
grabbed from Project Gutenberg (where texts have been proofread) or the Internet Archive
(where texts have been scanned and OCR’d, but not checked).

In the examples folder, you’ll see macbeth.txt, which is a version of Shakespeare’s Macbeth
from Project Gutenberg (original source: http://www.gutenberg.org/ebooks/1129.txt.utf-8)

Before hacking on the text, it’s worth opening it in a text editor and seeing what’s there; in this
case you’ll see some legal text, copyright notices, etc. It’s important to be aware of this if you’re
analyzing word frequencies; if this were a serious study, you’d want to clean up the source file
and remove this kind of cruft.

http://regexone.com/
http://regexcrossword.com/
http://regex.alf.nu/
http://xkcd.com/1313/
http://store-xkcd-com.myshopify.com/products/i-know-regular-expressions
http://www.gutenberg.org/
https://www.archive.org/
http://www.gutenberg.org/ebooks/1129.txt.utf-8

$ vim macbeth.txt

Remember that egrep, etc. work at the level of lines by default, so you get the whole line that
contains a match by default:

$ cat macbeth.txt | egrep 'ious '

will give all lines that contain a word ending in “ious”, followed by a space. To output just those
words, you could use this:

$ cat macbeth.txt | egrep -o '[A-Za-z]*ious '

Here’s an attempt at getting all of the words in the file:

$ cat macbeth.txt | egrep -o '[A-Za-z]+'

Then, do the now-idiomatic frequency list thing:

$ cat macbeth.txt | egrep -o '[A-Za-z]+' | sort | uniq -c |sort -r -n

Note some stuff of interest – “s” and “d” and “ll” appear as “words” of high frequency because
we didn’t include apostrophes as word characters. You see names in all-caps which are mostly
the names of people speaking. And, there’s plenty of Elizabethan English in the top 200 most
frequent words: “thou”, “thee”, etc.

Using Unix tools, can you figure out who speaks the most?

A first cut…

$ cat macbeth.txt | egrep ' [A-Z]+\. '

From this, notice that the Gutenberg editors are consistent about names starting two spaces
from the beginning of the line:

$ cat macbeth.txt | egrep '^ [A-Z]+\. '

but note that we’ve lost “LADY MACBETH”, “OLD MAN”, etc. because of spaces, so:

$ cat macbeth.txt | egrep -o '^ [A-Z]+\. ' | sort | uniq -c |
sort -r -n

Lecture 4.

Next, let’s actually start changing files around.

First, tr is a pipeline tool for “translating” characters. Typical uses:

$ cat macbeth.txt | tr "a-z" "A-Z"

$ cat macbeth.txt | tr -s '*'

It’s time we have a heart-to-heart about Unix vs. DOS line endings. On Windows machines, the
end of line in a text file is marked by two characters: a carriage return (CR) and a line feed (LF).
That’s decimal ASCII values 13 and 10, respectively. In the more refined Unix world, we mark
the end of line with just an LF. Sadly, DOS line endings are quite common in the wild, and
they’re a huge pain if you’re using the Unix tools. (Matching at the end of a line with $ won’t
work the way you expect it to, for example.) So, you should always check for them and strip
them (as demonstrated below) before working in earnest on a file.

For example, the macbeth.txt in the example folder (originally from Project Gutenberg) has
DOS line endings. You can see this by opening it in vim for example:

$ vim macbeth.txt

and you’ll see something like this at the bottom of the screen:

"macbeth.txt" [dos] 3196L, 129093C

Or there’s a great hacker tool called xxd that shows you the hex values of every byte in the
stream you pass through it:

$ cat macbeth.txt | xxd

Look for 0d0a in the output!

One way to strip the carriage returns is to use tr:

$ cat macbeth.txt | tr -d "\r" > macbeth-unix.txt

Note that we’ve redirected the output to a new file, which we’ll use in all of the examples below.

sed is a tool for doing replacements also, but instead of single characters for characters, you

can match and replace any regular expression! So, in other words, it gives you the
text-matching power of egrep with the ability to actually change the text. It’s clearly the best
Unix tool by far; we use it every day. Even better, it was written by a Saint Louis University grad,
Lee McMahon, who worked at Bell when Unix was first developed.

We could use sed to try and “modernize” Macbeth:

$ cat macbeth-unix.txt | sed 's/thee/you/'

But, note that this only performs the substitution on the first instance of “thee” on each line. To
apply it to every instance of “thee”, use the “g” flag at the end of the command:

$ cat macbeth-unix.txt | sed 's/thee/you/g'

Modernize more words in a longer pipeline:

$ cat macbeth-unix.txt | sed 's/thee/you/g' | sed 's/hath/has/g' |
sed 's/thou/you/g'

Now these matches occur anywhere, even in the middle of a word. How could we check if this
is going to be a problem? How about grepping in en.txt? Doing so shows us that “thee” and
“hath” are probably ok, but “thou” is a problem. We could also grep for 'thou[a-z]' in
macbeth-unix.txt for more concrete evidence.

We could say

$ cat macbeth-unix.txt | sed 's/ thou / you /g'

and be safe, but we’d miss examples followed by punctuation!

Let’s kill leading spaces:

$ cat macbeth-unix.txt | sed 's/^ *//'

And, kill trailing spaces:

$ cat macbeth-unix.txt | sed 's/ *$//'

And, then, force one space after a period.

$ cat macbeth-unix.txt | sed 's/\. */. /g'

We can refer back to the (full) matched pattern with a ‘&’. For example, to insert a blank line

http://en.wikipedia.org/wiki/Lee_E._McMahon

before each speech:

$ cat macbeth-unix.txt | sed 's/^ [A-Z]/\n&/'

Or you might note that there are stage directions in square brackets. We can kill those as
follows:

$ cat macbeth-unix.txt | sed 's/\[[^]]*\]//g'

Lecture 5

There’s a huge amount of useful data out on the web that’s “trapped” in semi-structured HTML
pages. The process of extracting this data into a more structured format is usually called
“screen-scraping.” There are libraries for parsing HTML documents in all major programming
languages, but here we want to demonstrate just how easy it is to get the information you want
from a page without doing a full parse, by just using the Unix tools.

For starters, grab a page from Wikipedia; really, any page in any language’s Wikipedia will do,
but for definiteness we’ve included this one (downloaded 7 Jan 2015) in the example folder:

$ wget https://en.wikipedia.org/wiki/Boots_Riley

To do this properly without parsing, it’s important to remember that the Unix tools work
line-by-line, but it’s perfectly fine for HTML tags, etc. to span multiple lines. To deal with this, we
usually start a pipeline by stripping out all newlines (both CR and LF, in case of DOS line
endings).

See if you can come up with pipelines that answer the following questions. (The answers to
these questions are below, at the end of this lecture.):

1. How many HTML tags (both open and close tags) are in the file?
2. How many of each type of tag (<a>, , <div>, etc., ignoring attributes)?
3. Is the number of open tags of each type equal to the number of close tags of each type?
4. Find all links to other pages on the same Wikipedia.
5. Then, search for pages that are linked more than one time. (It’s bad style to link the same
article multiple times in the body of an article. So, this is a kind of quality check.)

The next exercise is to create a geojson file from a CSV file of latitude and longitude pairs.
Geojson is a text-based file format for storing and exchanging map information; you can read

https://en.wikipedia.org/wiki/Boots_Riley

more about it here:
http://geojson.org/

When taught to a classroom of students, we have them tell us their hometowns, and enter them
into a batch geocoding service, like this one:
http://www.findlatitudeandlongitude.com/batch-geocode/

which gives a .csv file back. If you’re working through these notes alone, we’ve included a .csv
file in the examples called user2ll.csv, which contains latitude/longitude pairs for about 300
Māori Twitter users, as extracted from their user profiles. (We’ve used datasets like this to
create maps of Twitter conversations in a number of indigenous and minority languages, e.g.
here or here.)

We’d like to turn this .csv file into a geojson file that can be used to plot a map.
Here’s a sample geojson file that just contains simple points expressed as lat/long pairs:

{ "type": "FeatureCollection",
"features": [

{ "type": "Feature",
"geometry": { "type": "Point", "coordinates": [-39.512382, -18.970382] },
"properties": { "weight": "1" }
},
{ "type": "Feature",
"geometry": { "type": "Point", "coordinates": [-33.512382, -19.970382] },
"properties": { "weight": "1" }
},
{ "type": "Feature",
"geometry": { "type": "Point", "coordinates": [-38.512382, -10.970382] },
"properties": { "weight": "1" }
}

]
}

Note (in the geojson spec) that longitude comes before latitude, so we need to swap the order
of the coordinates from the file user2ll.csv (or the coordinates that you got back from the
geocoding service).

Here’s the whole pipeline:

$ cat user2ll.csv | sed 's/^[^,]*,//' | sed 's/^\([^,]*\),\(.*\)$/{
"type": "Feature", "geometry": {"type": "Point", "coordinates": [\2,
\1] }, "properties": { "weight": "1" } },/' | tr -d "\n" | sed
's/,$/]}/' | sed 's/^/{ "type": "FeatureCollection", "features": [/'

The first sed command removes the usernames from the source file.

http://geojson.org/
http://www.findlatitudeandlongitude.com/batch-geocode/
https://twitter.com/IndigenousTweet/status/413467362520604672/photo/1
http://indigenoustweets.blogspot.com/2013/12/mapping-celtic-twittersphere.html

The second sed command does all of the hard work; it takes each latitude/longitude pair and
turns it into the chunk of geojson that looks like { "type": "Feature" ... },
Note that we use capturing parentheses (i.e., sed 's/^\([^,]*\),\(.*\)$/ ...) when
matching the latitude and longitude, and we refer back to them as \1 and \2 respectively; this
is how we reverse their order.

The last step is to prepend the { "type": "FeatureCollection" bit, and to tack on the
closing]} ... at the end of the file. We do this the easy way, by stripping out all new lines,
putting the entire stream onto a single line, and then using sed to add stuff at the beginning and
end of that line. Note that we need to strip off the extra comma at the end of the last Point
feature.

You can paste the output of this command into a mapping site, like this one:
http://geojsonlint.com/

This site will also report any errors in your geojson file, which is a good way of testing.

General remarks on these tools: the “Unix Philosophy”....

● Small, simple tools that do one thing well
● Clean interfaces (read stdin, write to stdout)
● No interactivity
● Process plain text vs. binary formats
● No unnecessary output (or it’ll be a pain to process further)
● Don’t delete from stream unnecessarily; “pass it on”

Answers to the screen-scraping exercises above:

1: Number of tags, total:
$ cat Boots_Riley | tr -d "\r\n" | egrep -o '<[^>]+>' | wc -l

2: Number of each kind of tag:
$ cat Boots_Riley | tr -d "\r\n" | egrep -o '<[^>]+>' |

egrep -o '^<[A-Za-z0-9]+' | sed 's/^<//' | sort | uniq -c |
sort -r -n

3: Check that number of close tags matches number of open tags of the same type. Need to be
careful to filter out tags of the form
, etc.
$ cat Boots_Riley | tr -d "\r\n" | egrep -o '<[^>]*[^/]>' |

http://geojsonlint.com/

egrep '^<[A-Za-z/]' | sed 's/<\([A-Za-z0-9]*\) [^>]*>/<\1>/' |
sort | uniq -c | sort -r -n

4. Links to other pages on the same Wikipedia:
$ cat Boots_Riley | tr -d "\r\n" | egrep -o '<a[^>]+>' |

egrep -o 'href="/wiki/[^"]+"' | sed 's/^href="\/wiki\///' |
sed 's/"$//'

5. Find pages on the same Wikipedia that are linked more than once:
$ cat Boots_Riley | tr -d "\r\n" | egrep -o '<a[^>]+>' |

egrep -o 'href="/wiki/[^"]+"' | sed 's/^href="\/wiki\///' |
sed 's/"$//' | sort | uniq -c | egrep -v ' 1 '

Lecture 6

Next, working with tabular data (.csv, .tsv) using cut, paste, and join.

The goal of this lecture will be to create a “heatmap” showing the number of tweets coming from
certain locations. We’ll start with two .csv files (from the example folder); the first,
tweets.csv, has two fields in each row:

username,numberoftweets

and the second, user2ll.csv, is the same one we used in the previous lecture. It has three
fields in each row:

username,lat,long

Warmup; how to kill all but username?

$ cat user2ll.csv | sed 's/,.*//'

How to kill last field? Here’s a first naive attempt:

$ cat user2ll.csv | sed 's/,[^,]*//'

but, this kills the second field!

Here’s a better way:

$ cat user2ll.csv | sed 's/,[^,]*$//'

Or, it’s easy to use cut to pick the fields you want to display:

$ cat user2ll.csv | cut -d ',' -f 1
$ cat user2ll.csv | cut -d ',' -f 2
$ cat user2ll.csv | cut -d ',' -f 2,3

Now, paste lets you put things back together.

First, we’ll cut up our user2ll.csv file into two separate files, each containing a column of
data. Then, we’ll paste the two columns back together:

$ cat user2ll.csv | cut -d ',' -f 1 > firstcolumn.txt
$ cat firstcolumn.txt
$ cat user2ll.csv | cut -d ',' -f 2 > secondcolumn.txt
$ cat secondcolumn.txt
$ cat firstcolumn.txt | wc -l
$ cat secondcolumn.txt | wc -l
$ cat user2ll.csv | wc -l

Paste defaults to tab-separated output:

$ paste firstcolumn.txt secondcolumn.txt

But, of course you can customize with a command-line option:

$ paste -d ',' firstcolumn.txt secondcolumn.txt

Next is join. The main difficulty with using join in practice is that you need to sort on the join
field, as we’ll illustrate below.

We’ve seen sort before:

$ cat user2ll.csv | sort

But, this sorts the whole line, since the comma is regarded as just another character to sort.
This is not what we want in this case.

To sort on the first field (and have the comma regarded as a delimiter for that first field):

$ cat user2ll.csv | sort -t ',' -k 1,1 > users-sorted.csv
$ cat tweets.csv | sort -t ',' -k 1,1 > tweets-sorted.csv

$ join -t ',' tweets-sorted.csv users-sorted.csv

Let’s turn this into data for a “heat map” of tweets:

$ join -t ',' tweets-sorted.csv users-sorted.csv |
sed 's/^[^,]*,//' | sed 's/^\([0-9]*\),\(.*\)$/\2,\1/'

You can then upload the output to a site like http://cartodb.com/ to create a heatmap or other
visualizations.

tsv files are sometimes easier since tabs are the default delimiter for most of these tools. If you
have csv files, you can can always convert:

$ cat tweets.csv | tr "," "\t"

or:

$ cat tweets.csv | sed 's/,/\t/g'

Lecture 7

Most modern machine translation engines are based on statistical models. Broadly speaking,
the idea is to assemble a large corpus of texts and their translations, align them
sentence-by-sentence, and then gather statistics about which words and phrases translate to
which words and phrases.

Let’s use the Unix tools to put together a parallel corpus of texts from the Bible. A good source
of Bible texts in many languages is the “Unbound Bible” site:
http://unbound.biola.edu/index.cfm?method=downloads.showDownloadMain

We’ve included the Lithuanian and Māori bibles from this site in the examples folder (in the files
lithuanian_utf8.txt and maori_utf8.txt respectively). Browsing these files, you’ll
see that they have one verse per line, and six tab-separated fields on each line, the last being
the text of the verse. In trying to align these verse-by-verse, we immediately run into difficulties,
in particular because the number of lines in the two files are different. Remember this is the real
world, and the real world is noisy! Basically, some verses are included in the Lithuanian Bible
that aren’t present in the Māori one, and vice versa.

How could we figure out which are the “problem” verses? The Unix tools!

What we do is:

http://cartodb.com/
http://unbound.biola.edu/index.cfm?method=downloads.showDownloadMain

● create a stream from the two files using cat;
● strip the CR’s and comments;
● use cut to select the fields that uniquely identify the book, chapter, and verse;
● count the number of times each one appears; and,
● keep the handful that appear only once. (Most of them appear twice.)

$ cat lithuanian_utf8.txt maori_utf8.txt | tr -d "\r" |
egrep '^[^#]'| cut -f 1,2,3 | sort | uniq -c | egrep ' 1 '

This pipeline should output the seven verses that appear in only one of the two files. This
number is small enough that you could probably just open the files in a text editor and remove
the mismatched verses manually. But, let’s take this opportunity to teach you a nice feature of
egrep. The idea is to convert these verse numbers into regular expressions that you can store
in a file, and then use egrep to filter out any lines matching a pattern in the file. To this end,
let’s extend the pipeline above a bit, and redirect the output to a file patterns.txt:

$ cat lithuanian_utf8.txt maori_utf8.txt | tr -d "\r" |
egrep '^[^#]'| cut -f 1,2,3 | sort | uniq -c | egrep ' 1 ' |
sed 's/^ *1 //' | sed 's/^/^/' | sed 's/\t/./g' > patterns.txt

Have a look at patterns.txt. You’ll see that we’re anchoring the patterns to the beginning of
a line with ^, and we’re using . to match the tab characters.

Next, using the -f flag to egrep will allow us to specify a file containing patterns:

$ cat lithuanian_utf8.txt | tr -d "\r" | egrep -v -f patterns.txt |
egrep -v '^#' | cut -f 6 > lt.txt

$ cat maori_utf8.txt | tr -d "\r" | egrep -v -f patterns.txt |
egrep -v '^#' | cut -f 6 > mi.txt

As a final exercise, imagine that we need to combine these two texts into into a single .csv file
containing one verse per row, the first column being Lithuanian and the second Māori. Since
the texts themselves contain commas, we’ll need to enclose each verse in double quotes. (And,
fortunately, neither of the texts contains ASCII double quotes, so we don’t have to worry about
escaping those.) Using paste and sed, we can accomplish exactly that:

$ paste lt.txt mi.txt | sed 's/^\(.*\)\t\(.*\)$/"\1","\2"/'

Lecture 8

Let’s start with some familiar territory; we’ll process another HTML file from the English
Wikipedia (Linguistics in the examples folder) and extract some useful info from it using
egrep and sed.

As you may know, Wikipedia articles contain links to articles on the same topic in other
languages. We can scrape these from the English Wikipedia to get translations of a given word
into many languages. (These so-called “interwiki” links are now managed as part of the
wikidata project. Getting the links from wikidata is probably the best way to do what we’re doing
here, but we still like the method we’ll use below as a nice illustration of HTML scraping.)

We can build this up step-by-step:

$ cat Linguistics
$ cat Linguistics | egrep 'interlanguage-link'
$ cat Linguistics | egrep 'interlanguage-link' |

egrep -o 'title="[^"]*'
$ cat Linguistics | egrep 'interlanguage-link' |

egrep -o 'title="[^"]*' | sed 's/^title="//'

To remove the language names, we want to get rid of the hyphen and everything that follows.
But, be careful... this is actually a Unicode dash, not an ASCII hyphen. This sort of thing
happens quite often in the real world! You’ll also often see weirdness like non-breaking spaces
that are difficult to distinguish from regular space characters. Remember that xxd and a good
understanding of Unicode are your friends!

$ cat Linguistics | egrep 'interlanguage-link' |
egrep -o 'title="[^"]*' | sed 's/^title="//' | sed 's/ – .*//'

Now, you can use the up-arrow to repeat this command any time you want (if the
Linguistics file is in the current directory). But, what about if you log out later? You can
save the command in a file! Copy the command (without the prompt), and paste it into a file
named Linguistics.sh.

You’ve just created your first shell script. It’s a (one-line) computer program, no different than
writing a Perl or Python program. To run it, use:

$ bash Linguistics.sh

This is the analogue of running a python program with python program.py.

Sidebar on history. The history command outputs the history of all commands you’ve
entered at the command-line during the current session. The cool thing is that the output of
history is a text stream like any other, and you can process it with any of the Unix tools:

http://www.wikidata.org/

$ history

To find every time you used the command wget:

$ history | egrep wget

You can even select a bunch of previous commands using egrep, and rerun them by saving
them in a shell script:

$ wget http://en.wikipedia.org/wiki/Irish_phonology
$ wget http://en.wikipedia.org/wiki/Saint_Louis_University
$ wget http://en.wikipedia.org/wiki/Indigenous_Tweets

Let’s say you accidentally wipe out these three files that you’ve just downloaded:

$ rm Irish_phonology Saint_Louis_University Indigenous_Tweets

Rerun the wget commands like this:

$ history | egrep wget
$ history | egrep wget | egrep -v history
$ history | egrep wget | egrep -v history | sed 's/^ *[0-9]* *//'
$ history | egrep wget | egrep -v history |

sed 's/^ *[0-9]* *//' > wgetter.sh
$ bash wgetter.sh
$ ls

Something awesome just happened here; we “wrote” a new program (a shell script) using a
program. More on this in a sec.

Next, the Linguistics.sh program is nice, but only deals with a single Wikipedia article. We
can do the same thing with any article. Let’s generalize:

$ mv Linguistics.sh Multilingual.sh

We’d like to be able to say, for example:

$ bash Multilingual.sh Mathematics

and have it output a bunch of “translations” of the given term. To do this, open the script in your
favorite text editor:

$ vim Multilingual.sh

and do two things: first, insert a line

wget "http://en.wikipedia.org/wiki/${1}"

at the beginning of the file. Then, change cat Linguistics to cat "${1}" at the
beginning of the pipeline. The variable ${1} refers to the first “command-line” argument
passed to the shell script (“Mathematics” in the example above). We should also probably
add a check to ensure that the user has provided the correct number of command-line
arguments, but we won’t worry about that now.

$ bash Multilingual.sh Justin_Bieber
$ bash Multilingual.sh Justin_Bieber | wc -l
$ bash Multilingual.sh Science
$ bash Multilingual.sh Baseball
$ bash Multilingual.sh Beatles
$ bash Multilingual.sh Linux
$ bash Multilingual.sh Propaghandi

This keeps the downloaded files in the current directory. You might be tempted to add a line like
rm "${1}" at the end of the script; this is exceedingly dangerous, though, without some very
careful checking of the command-line argument. (A user passing a string containing a wildcard
might wipe out their whole hard drive.)

The output from wget is a bit annoying. Programs on the command line can actually send their
output to two different places. The text streams we’ve worked with to this point are being sent to
“standard output”, a.k.a. “stdout”. Some text can go to what’s called “standard error”, or “stderr”.
This is what you’re seeing from wget.

If you redirect output, you’re just redirecting standard output; so

$ bash Multilingual.sh Propaghandi > p.txt

dumps the list of translations into the file p.txt, but you still see the output from wget. Again,
that’s because it’s going to stderr, not stdout. You can redirect everything to one place as
follows:

$ bash Multilingual.sh Propaghandi &> p.txt

And, if you want to silence a command completely and don’t want to keep the output in a file,
you can “redirect to dev-null” (a.k.a. “the great bitbucket in the sky”) by changing the wget

command in Multilingual.sh to this:

wget "http://en.wikipedia.org/wiki/${1}" &> /dev/null

Lecture 9

You can even have shell scripts that work in the middle of a pipeline. This is a big idea! The
Unix tools themselves are useful exactly because each one does something small and does it
well, and each reads from stdin and writes to stdout so they can be piped together. But, this
ecosystem of tools is not closed... you can define your own Unix tools. And, the most useful
and reusable tools are themselves filters, i.e. they read from stdin and write to stdout, exactly
because they can then be used in pipelines.

A nice example is the idiomatic sort | uniq -c | sort -r -n business we’ve seen over
and over in previous examples. Put this in a file called counter.sh:

$ vim counter.sh

You could run this with bash counter.sh but it would just sit there apparently not doing
anything. Why? Try this first:

$ sort

It’s working, but the text stream it’s reading from is “standard input”, a.k.a. the keyboard. We
can type a few lines and hit Ctrl-D and it’ll work as expected. To use counter.sh in earnest,
you just pipe an interesting text stream into it:

$ bash Multilingual.sh 'Justin_Bieber' | bash counter.sh

Now for more “programs that write programs”. What if we want not just the names of the articles
in other languages, but we want to get those articles themselves?

This pipeline will get a list of URLs pointing to those documents:

$ cat Linguistics | egrep 'interlanguage-link' |
egrep -o 'href="[^"]*' | sed 's/^href="/http:/'

So, we’ve turned a text stream coming from a Wikipedia article in HTML into a new text stream
that has some useful data, a list of URLs. But, it gets better. What if we do this:

$ cat Linguistics | egrep 'interlanguage-link' |
egrep -o 'href="[^"]*' | sed 's/^href="/http:/' |
sed 's/^/wget /' > mygetter.sh

We’ve just turned a text stream coming from a Wikipedia article into a program that does
something awesome. It’s an example of what some people call “higher-order programming”.

Now, executing

$ bash mygetter.sh

will accomplish precisely what we’ve set out to do: fetch all of the actual documents being linked
to within the “Linguistics” Wikipedia article.

We can even just pipe the stream commands directly to the bash interpreter without saving
them as a shell script:

$ cat Linguistics | egrep 'interlanguage-link' |
egrep -o 'href="[^"]*' | sed 's/^href="/http:/' |
sed 's/^/wget /' | bash -s

Here’s a final example... suppose we have a directory containing a bunch of .htm files and
want to rename them all as .html:

$ ls *.htm | sed 's/\(.*\)\.htm/mv \1.htm \1.html/' > mover.sh

Be sure it looks good!

$ vim mover.sh

If so, run it:

$ bash mover.sh

Lecture 10

What we've done so far is "hacking" on the command line. Basically, we create a text stream,
tweak it with pipeline commands, examine the output, then add more to the pipeline until the
output looks how we want it to.

This isn't how disciplined software engineers work, however.

For example, once you have a pipeline you're happy with, you ought to save it in a script (either
as a .sh file, or using other methods which we're about to discuss) so that you can reproduce
the same behavior later.

The other thing we want to do is "Version Control". A Version Control System is a piece of
software that developers use to track all changes in all data files and source code files in a
project.

Why use version control?

● Makes collaboration easier. Shared, up-to-date code base.
● Tracks history of every change with log message explaining the reason for it. Log

messages often refer to bug reports.
● Can serve as a (maybe suboptimal) method of effort tracking.
● Allows “diff” between any two versions.
● Essential for debugging and “root cause analysis”. Find the exact commit that

introduced a given bug.
● Most tools allow “blame view” – a way to look at a file with each line annotated by the

person who added that line, and a cross-reference to the commit that added the line.
● Backup of all files. Some systems use a “centralized repo”, while others, like git, use a

“distributed” model – which means that no one copy of the repo is more important than
others, theoretically.

● Allows you to maintain multiple “branches” of a project. Stable branch, “next” branch for
next stable release, “trunk” or bleeding edge branch, etc.

● Branching allows fearless experimentation. Create a branch, try something, and if it
doesn’t work, discard the branch. If it does work, “merge” in with the main development
branch. And, if you change your mind after merging, you can still “revert” at any time.

We’ll use git which has become the de facto industry standard.

git is often (but not always) used in conjuction with the website http://github.com/ which is a
central place for storing your git repositories so that a group of people can collaborate on a
single piece of code.

Before proceeding, if you don’t have an account on github, you should create one and then
make sure you have git installed on your Linux machine, by typing:

$ git --version

If you’re new to git, you’ll avoid errors in the future by specifying your name and email address
(for the log files) as follows:

http://github.com/

$ git config --global user.email "you@example.com"
$ git config --global user.name "Your Name"

Now, let’s create your first repository, in a subdirectory of your home directory:

$ cd
$ mkdir MyProject
$ cd MyProject/
$ git init

The repo is empty:

$ ls

But there are some “hidden” data files in a subdirectory called .git:

$ ls .git

Let’s create some interesting files and commit them to the repository. To do that, we want to
detour and talk about the Unix tools find and xargs for a moment...

Returning to the examples folder, there’s a subdirectory irishblogs which contains a bunch
of text files:

$ cd ~/examples
$ ls irishblogs

(Reminder – how to figure out how many!)

$ ls irishblogs | wc -l

find is a bit like ls but much more powerful. By default it recurses over all subdirectories
under the given directory:

$ find irishblogs

And, you can specify “filters”:

$ find irishblogs -name '12*'
$ find irishblogs -name '15?.txt' | sort

We won’t go into them all, but you can filter by modification time, file size, etc.

$ man find

What if we want to do the same shell command to every file? (We saw something like this
toward the end of the previous lecture, Lecture 9, when we moved a bunch of files using our
“higher order programming” mygetter.sh bash script.)

$ find irishblogs -name '12*' > FILE
$ cat FILE
$ cat FILE | sed 's/^/egrep " agus " /' > FILE.sh
$ cat FILE.sh
$ bash FILE.sh

With the command xargs you can do all of this in one command. xargs is a pipeline tool, so it
reads from standard input like everything else. But, it expects a text stream consisting of file
names, one per line. So, quite often we use find to pipe filenames into it. What xargs does is
execute the given command on each file that it gets.

$ find irishblogs -name '12*' | xargs egrep " agus "

Since our FILE.sh bash version above didn’t print the file names of the text files, let’s
reproduce that behavior by including the -h flag with egrep:

$ find irishblogs -name '12*' | xargs egrep -h " agus "

(Also, note that this was faster than the version with bash!)

To concatenate together all of the files whose names start with “12”:

$ find irishblogs -name '12*' | xargs cat

And, now, let’s commit some data to the repository:

$ find irishblogs -name '1*' | xargs egrep -h ' agus ' | shuf > FILE
$ mv FILE ~/MyProject
$ cd ~/MyProject
$ git add FILE
$ git commit -m "Adding data file"
$ git log FILE

Now, let’s hack on it... Let’s say we want to find references to years (1994, 2014, etc.) in this file.
We’ll begin building up this pipeline:

$ cat FILE | egrep -o '[0-9]+' | egrep '^(19|20)[0-9][0-9]$' | sort |
uniq -c | sort -r -n

Ok. This pipeline (starting with the first egrep) is nice and useful, something you might imagine
using in other contexts. So, we might save it in a script, calling it yearfinder.sh:

$ vim yearfinder.sh
$ cat FILE | bash yearfinder.sh > commonyears.txt
$ git add yearfinder.sh
$ git commit -m "new script"

Now, let’s say that at some point we become unhappy with commonyears.txt. For example,
maybe our requirements have changed and we need to include years from the 1800’s. Or,
perhaps we want the year to appear first, followed by the frequency.

So, we tweak yearfinder.sh to our liking.

To reverse the display position of the year and the frequency, we could add a sed command to
the end of our pipeline contained in yearfinder.sh, as follows:

egrep -o '[0-9]+' | egrep '^(19|20)[0-9][0-9]$' |
sort | uniq -c | sort -r -n | sed 's/^ *\([0-9]*\) \(.*\)$/\2 \1/'

We’ll edit and resave yearfinder.sh so that it contains only this new pipeline:

$ vim yearfinder.sh

And, then test:

$ cat FILE | bash yearfinder.sh > commonyears.txt
$ cat commonyears.txt

If commonyears.txt looks better, and each year indeed appears in front of its respective
frequency, as we intended, then we can now commit this new version of yearfinder.sh to
the repository:

$ git diff

(‘q’ to quit)

$ git add yearfinder.sh
$ git commit -m "reformat output"
$ git log

We can then make another change, to allow years from the 1800’s as well, for example, and
repeat the above steps. Test. Verify. Commit.

We’ll discuss a more sophisticated workflow, involving “branching” and “merging,” in the next
lecture.

Side remark – do you want to commit commonyears.txt and track all changes? The
conventional wisdom is “no,” because it can be regenerated from files that are in the repo
(namely, FILE and yearfinder.sh), but it’s up to you.

We can change the data file, too. For example, maybe we try to filter out English by deleting
lines containing “ the “. (Dumb idea. But, whatever.):

$ egrep ' the ' FILE
$ cat FILE | egrep -v ' the ' > FILE2
$ mv FILE2 FILE
$ git diff

(‘q’ to quit)

$ git add FILE
$ git commit -m "kill all lines with the"
$ git log

(‘spacebar’ to continue, or ‘q’ to quit)

$ git diff

Lecture 11

Let’s talk about make and makefiles.

When we left off last time, we’d created a git repo, ~/MyProject, and were using it to track all
changes in our files. Let’s add some data to this directory!

There’s an example file called gd-tweets.txt that contains a sampling of tweets in Scottish
Gaelic. Twitter allows some characters with diacritics (accents) to appear within a hashtag, but
not others. And, this has an interesting effect on some users’ behavior, in that they’ll drop
diacritics in hashtags that they would typically include otherwise. So, let’s say we want to
analyse usage of diacritics in hashtags in this collection.

Since we’re about to embark on some changes, we get a cup of coffee and begin our workday
with a fresh new “branch.” We’ll name this new branch ‘addmakefile’. From within our git repo
directory ~/MyProject:

$ git checkout -b addmakefile

This starts as an exact copy of the “master” branch. But, then we can change it, test those
changes, etc. And, when we’re satisfied, we merge the changes back into the master branch.
Or, if the changes don’t pan out, we can just delete the branch, and we’re back to where we
started. No harm, no foul!

Back to hacking on the command line... We’ll first write something that grabs all hashtags (and,
that will get diacritics, too, in a UTF-8 locale):

$ cat gd-tweets.txt | egrep -o '#[A-Za-z0-9]+' |
sort | uniq -c | sort -r -n

As disciplined software engineers, maybe we store this pipeline in a script that we can run later:

$ vim script2.sh
$ bash script2.sh > hashtags.txt

A lot of what we do is structured this way. A text stream gets filtered into something we want to
keep; we then save it as a file. Commands of this kind are most conveniently stored in a
“makefile”.

$ vim makefile

Then, we add lines that look like this:

hashtags.txt: gd-tweets.txt
cat gd-tweets.txt | egrep -o '#[A-Za-z0-9]+' | sort |
uniq -c | sort -r -n > hashtags.txt

We could also have put bash script2.sh > hashtags.txt. But, it’s much nicer having
all of the commands here in this one file.

That’s a TAB before the shell command (i.e., immediately preceding “cat gd-tweets.txt
...”); it needs to be there. We’ve heard this requirement described as “the worst design decision
in the history of software.”

Additionally, we need to be sure to enter the entire shell command as a single, unbroken line.

Let's also replace hashtags.txt at the end of the shell command with $@, which stands for
“target filename”. It’s less typing and is convenient if we ever want to change the name of the
file later.

So, let’s do it all in the makefile:

$ rm -f script2.sh
$ rm -f hashtags.txt
$ make hashtags.txt

Or, because it’s the first (only) target in the makefile, we can just:

$ make

And, if we run make again:

$ make

It doesn’t do anything. Which is to say, make is SMART. It checks timestamps on all
dependencies (recursively), and only remakes those targets that are out-of-date with respect to
their dependencies. For those who’ve studied algorithms, it does a “topological sort” on the
digraph of dependencies to decide what gets built first.

But, if we change the dependency, say by opening gd-tweets.txt in a text editor and
deleting one of the tweets, or even just by applying touch to update its timestamp:

$ touch gd-tweets.txt

and run make again, it does actually rebuild:

$ make

To add a second target, we add the following lines to the end of our makefile, remembering that
a TAB needs to immediately precede the shell command:

accentedtags.txt: hashtags.txt
cat hashtags.txt | egrep '[ÁÉÍÓÚáéíóúÀÈÌÒÙàèìòù]' |
sed 's/^ *[0-9]* //' > $@

And, it’s typical to add an “all” target at the very top of the makefile:

all: accentedtags.txt

This way, when we just type make, it will try to make any dependencies which are listed there.

Now, we want to strip all accents from the hashtags we extracted from gd-tweets.txt, and
search for the ASCII versions. For this, we need a way of stripping accents from a text stream.
This might be a nice, reusable command that we can put into a script which we’ll call
toascii.sh.

As a fun interlude, we can “write” this script using Unix tools. First, we echo a one-line text
stream consisting of the accented characters we care about followed immediately by their ASCII
versions. Then, using sed, we massage that echoed text stream into the script we want:

$ echo 'ÁAÉEÍIÓOÚUáaéeíióoúuÀAÈEÌIÒOÙUàaèeìiòoùu' |
sed 's/\(.\)\(.\)/s\/\1\/\2\/g; /g' |
sed "s/^/sed '/" | sed "s/$/'/" > toascii.sh

With this in place, we can add a new target to the makefile:

stripped.txt: accentedtags.txt
cat accentedtags.txt | bash toascii.sh > $@

It’s typical to include a “clean” target that will remove all generated files whenever make
clean is executed. Let’s add one, then, to the end of our makefile:

clean:
rm -f stripped.txt accentedtags.txt hashtags.txt

Since this new functionality seems to work, we might decide to commit these changes to the
repository, merge the branch back into master, and start a new cycle with a new branch. You
should be on the branch addmakefile; we can always check where we are as follows:

$ git status

Then, we commit the new files to this branch:

$ git add makefile toascii.sh
$ git commit -m "add script that strips diacritics"
$ git status

and merge the branch back into the master branch:

$ git diff master
$ git checkout master

$ git merge addmakefile
$ git diff
$ git branch -d addmakefile

When we’re ready to continue working, we start the process over again by creating a new
branch - which we might name, for example, ‘addreporttarget’ - just as we did at the start of this
lecture when we got a cup of coffee and began our workday with the fresh new branch named
‘addmakefile’.

Let’s create that new branch, which we’ll indeed name ‘addreporttarget’. From within our git repo
directory ~/MyProject:

$ git checkout -b addreporttarget

Next, to complete the analysis of diacritics in hashtags, we want to paste accentedtags.txt
and stripped.txt together, and turn this into a script that searches for each in
hashtags.txt. In practice, we would work out the pipeline command to do this at the
command line in the usual way, and when it works, add it to the makefile. The result would look
something like following, which we'll now add to our makefile (immediately preceding clean:):

search.sh: stripped.txt
paste accentedtags.txt stripped.txt | sed 's/\t/|/' |
sed 's/^/egrep " (/' | sed 's/$$/)$$" hashtags.txt; echo/' > $@

report.txt: search.sh hashtags.txt
bash search.sh > $@

We'll update our makefile's “clean” targets, as well, to include report.txt and search.sh:

clean:
rm -f report.txt search.sh stripped.txt accentedtags.txt
hashtags.txt

Since report.txt is our ultimate goal, we’ll change our makefile’s “all” target to make
report.txt:

all: report.txt

Now, we can run make, and check the results of our analysis of the usage of diacritics in
hashtags:

$ make
$ cat report.txt

If everything worked as expected, we just commit and merge to master as usual:

$ git status
$ git add makefile
$ git commit -m "add targets for search.sh and report.txt"
$ git status
$ git diff master
$ git checkout master
$ git merge addreporttarget
$ git status
$ git branch -d addreporttarget

Lecture 12

When taught to a class, this lecture is run as a contest. The students work in pairs and see who
can find the most palindromes in running English text, in a one-hour class period.

Every palindrome you find must be given together with an example sentence (or, more simply,
just the line in the text file) in which it appears.

The rules: palindromes must (a) be at least four letters; (b) be all lowercase, so in particular no
acronyms; and (c) contain at least two different letters, so no “xxxx” or “yyyy”.

(1) Find lots of English text, probably from the web, and save it as plain text.
(2) Create a word list from this.
(3) Find a way to pick out the palindromes from this list. (Hint: rev, paste, egrep; one
solution is given below.)
(4) Take the list of palindromes you find, and turn it into a script that goes back and greps for
example lines.

Here’s a solution for (3) – if words.txt is a wordlist with one word per line:

$ cat words.txt | rev | paste words.txt - |
egrep '^([a-z][a-z][a-z][a-z]+).\1$' |
egrep -v '^((.)\2+).\1$' | sed 's/\t.*//' > palindromes.txt

Lecture 13

For starters, let’s hack on a cool dataset; this is the file randomsample.txt in the examples
folder. It contains one sentence per line in 1474 different languages, found as part of the first
author’s Crúbadán web crawling project.

Let’s explore:

$ cat randomsample.txt
$ cat randomsample.txt | wc -l
$ cat randomsample.txt | egrep '^a'
$ cat randomsample.txt | egrep '^a' | wc -l

What if we wanted to save each sentence to a separate file in a subdirectory samples,
filename <languagecode>.txt?

To this point, everything we’ve done has involved linear processing of a text stream. NO
TRADITIONAL PROGRAMMING CONSTRUCTS. Maybe you hadn’t noticed this. No
variables. No loops. No “if” statements. Notice it now – this is crazy, and awesome.

Well, we still don’t need traditional programming constructs; we can just use the “programs that
write programs” approach and massage the thing into a runnable script. A bit of care is needed
here to deal with quotes; an easy hack is to just convert double quotes into entities for the script,
and then convert them back when writing the files:

$ mkdir samples
$ cat randomsample.txt | sed 's/"/\"/g' |

sed 's/^\([^\t]*\)\t\(.*\)$/echo "\2" |
sed "s\/\"\/\\\"\/g" > samples\/\1.txt/'

We could save the output of this command as a .sh script and run it, or else pipe it directly to
bash -s as we did earlier.

But, let’s see how to do the same thing with a loop and variables. For starters, open a file called
script.sh using your favorite editor:

$ vim script.sh

And, we’ll put the following into it:

cat randomsample.txt |
while read x
do

echo "$x"
done

http://borel.slu.edu/crubadan/

The while loop reads each line one-by-one, assigning each to the variable “x”. Inside the loop,
we just echo the line to standard output. So, the script above is exactly the same as cat
randomsample.txt!!

Let’s do some more interesting processing inside the loop. We’ll edit script.sh again and
change the stuff inside the loop:

cat randomsample.txt | egrep '^a' | tr "\t" " " |
while read x
do

SENTENCE=`echo $x | sed 's/^[^]* //'`
LANGCODE=`echo $x | sed 's/ .*//'`
echo $SENTENCE > samples/$LANGCODE.txt

done

We run the script:

$ bash script.sh

and, then, check that everything looks good in the samples directory. How might we check to
see that every file has exactly one line in it?

$ find samples -name '*.txt' | xargs wc -l | egrep -v ' 1 '

outputs the total number of lines across all files. So, if each file consists of exactly one line, the
value returned by the above line of code should match the total number of files, which is the
value given to us by the following line of code:

$ ls samples/ | wc -l

We can also process all of this with a loop... which introduces us to the “if” statement and
conditionals. We should be aware that “types” of variables can be weird, and sometimes a
numerical comparison might be made between one or more variables containing string data!
We’ll replace all of the code in our script.sh file with the following:

find . -name '*.txt' |
while read x
do

LINES=`cat $x | wc -l`
if [$LINES -ne 1]
then

echo "There is a problem with file $x, it has $LINES lines"
fi

done

Next, let’s talk about “environment variables.”

$ printenv

Discuss $HOME, $USER, $PWD, $LANG. (Briefly.)

We can use these in scripts...

find . -name '*.txt' |
while read x
do

LINES=`cat $x | wc -l`
if [$LINES -ne 1]
then

echo "Hey $USER, problem with file $x, it has $LINES lines"
echo "Why don't you go to your home directory, $HOME"

fi
done

We can change or set new environment variables:

$ export USER=kevin

(Though this is probably a bad idea!)

Next, let’s try this:

$ locale

We’ll see several special environment variables that determine the “international” behavior of
programs that we run at the command-line. Let’s walk through and discuss the impact of
LC_MONEY, LC_COLLATE, etc.

We can see the behavior of LC_COLLATE by sorting a file containing the following two lines:

tu
tá

and seeing that you get different results in a UTF-8 locale and the C locale.

$ export LC_ALL=C
$ sort

We also set the environment for one command:

$ LC_ALL=C sort ...

Lecture 14

A bit more “non-linear” processing, using tee.

First, we’ll generate a frequency list from the collection of text files (Irish language blog posts) in
the subdirectory irishblogs of the examples folder.

$ cd irishblogs
$ ls
$ ls | wc -l

Quick word frequency list:

$ cat *.txt | egrep -o '[A-Za-z]+' | sort | uniq -c | sort -r -n |
sed 's/^ *\([0-9]*\) \(.*\)$/\2 \1/' | head -n 100

But, when doing statistical analysis of texts, it’s important to look at how many different texts a
given word appears in. So, for example, if we have a corpus of 100 books, the word “Ahab”
might appear with very high frequency. But, that’s because it’s common only in Moby Dick; so
appearing in just one of the 100 books makes it less “important.” How, then, might we add a
“column” for the number of different text files each word appears in?

$ cat *.txt | egrep -o '[A-Za-z]+' | sort | uniq -c |
sort -r -n | sed 's/^ *\([0-9]*\) \(.*\)$/\2 \1/' |
head -n 100 | LC_ALL=C sort -k1,1 | tee TEMP | sed 's/ .*//' |
while read x
do

echo $x `egrep -l "\W$x\W" *.txt | wc -l`
done | LC_ALL=C join TEMP -

Lecture 15
Unicode for Linguists.

Appendix

Excerpt from the Doug McIlroy interview mentioned in Lecture 2:

One place that McIlroy exerted managerial control of Unix was in pushing for pipes. The
idea of pipes goes way back. McIlroy began doing macros in the CACM back in 1959 or 1960.
Macros involve switching among many data streams. "You're taking in your input, you suddenly
come to a macro call, and that says, stop taking input from here, go take it from the definition.
In the middle of the definition, you'll find another macro call. Somewhere I talked of a macro
processor as a switchyard for data streams. ...In 1964, [according to a] paper hanging on
Brian's wall, I talked about screwing together streams like garden hoses."

"On MULTICS, Joe Osanna, ... was actually beginning to build a way to do input-output
plumbing. Input-output was interpreted over this idea of the segmented address space in the
file system: files were really just segments of the same old address space. Nevertheless, you
had to do I/O because all the programming languages did it. And he was making ways of
connecting programs together."

While Thompson and Ritchie were laying out their file system, McIlroy was "sketching
out how to do data processing by connecting together cascades of processes and looking for a
kind of prefix-notation language for connecting processes together."

Over a period from 1970 to 1972, McIlroy suggested proposal after proposal. He recalls
the break-through day: "Then one day, I came up with a syntax for the shell that went along
with the piping, and Ken said, I'm gonna do it. He was tired of hearing all this stuff." Thompson
didn't do exactly what McIlroy had proposed for the pipe system call, but "invented a slightly
better one. That finally got changed once more to what we have today. He put pipes into Unix."
Thompson also had to change most of the programs, because up until that time, they couldn't
take standard input. There wasn't really a need; they all had file arguments. "GREP had a file
argument, CAT had a file argument."

The next morning, "we had this orgy of `one liners.' Everybody had a one liner. Look at
this, look at that. ...Everybody started putting forth the UNIX philosophy. Write programs that
do one thing and do it well. Write programs to work together. Write programs that handle text
streams, because that is a universal interface." Those ideas which add up to the tool approach,
were there in some unformed way before pipes, but they really came together afterwards.
Pipes became the catalyst for this UNIX philosophy. "The tool thing has turned out to be

http://borel.slu.edu/pub/INNET-Unicode.pdf
http://www.princeton.edu/~hos/frs122/precis/mcilroy.htm

actually successful. With pipes, many programs could work together, and they could work
together at a distance."

