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Let M = Γ\Hn be a closed oriented hyperbolic

n-manifold. It will be useful in all that follows

to think of Γ as a lattice in SO(n,1).

There are two related deformation problems

(in hyperbolic and Lorentzian geometry, re-

spectively) which are controlled by the group

cohomology H1(Γ,Rn+1) with coefficients in

the standard representation of SO(n,1) on Min-

kowski space.

(One can think of the group cocycles as func-

tions c : Γ → Rn+1 satisfying the cocycle rela-

tion

c(ab) = c(a) + a · c(b).

The coboundaries are of the form

c(a) = v − av.)



The first context in which this cohomology

group arises is the study deformations of Γ in

SO(n+1,1).

When n = 2, for example, we are talking about

deforming a Fuchsian group from SO(2,1) into

a quasi-Fuchsian group in SO(3,1).

A tangent vector to a curve of representations

amounts to an assignment c : Γ → so(n+1,1)

of a Lie algebra element to each element of

Γ. The condition that the relations in the

group hold to first order is precisely the cocycle

condition, and the coboundaries correspond to

curves of representations obtained by conjuga-

tion.

Thus H1(Γ, so(n+1,1)) can be thought of as

the space of first-order deformations of Γ in

SO(n+1,1), up to conjugation.



Now as a Γ-module, the Lie algebra splits:

so(n+1,1) ∼= so(n,1)⊕Rn+1

and therefore so does the cohomology

H1(Γ, so(n+1,1)) ∼= H1(Γ, so(n,1))⊕H1(Γ,Rn+1).

so

H1(Γ, so(n+1,1)) ∼= H1(Γ,Rn+1)

when n > 2 by (local) rigidity.

If n = 2, then this is a splitting of the tan-

gent space to quasi-Fuchsian space into the

Teichmüller directions and the “other” direc-

tions.



Before discussing the second deformation prob-

lem, let’s look at what’s known about the di-

mension of H1(Γ,Rn+1) in general.

When n = 2, the dimension is easily computed

and equals the dimension of the Teichmüller

space of M .

For n ≥ 3, very little is known in general.

An embedded totally geodesic submanifold yields

a bending deformation; the tangent vector to

such a deformation is a non-zero class.

In joint work with Anneke Bart, we’ve shown

that you get cohomology even if the surface is

immersed, but “nearly embedded” (the figure-

eight knot complement shows that some as-

sumption is essential). And more generally

for the “branched totally geodesic surfaces” of

Kapovich-Millson satisfying a similar condition.



Not all examples come from branched totally

geodesic surfaces.

The k-fold cyclic branched covers of the figure-

eight knot k ≥ 4 (the “hyperbolic Fibonacci

manifolds”) satisfy dimH1(Γ,R4) = 2. These

manifolds have zero first Betti number; in fact

the 4-fold cyclic branched cover is non-Haken

and contains no branched totally geodesic sur-

faces.

These examples provide the main motivation

for this work, in the following sense . . .



Other than the original bending construction,

none of the constructions of cohomology classes

is known to produce integrable deformations

(despite isolated examples of Apanasov: his

“stamping” deformations, etc.)

Indeed a central open question in this area is

whether or not the representation variety of Γ

in SO(n+1,1) is smooth at the inclusion.

Kapovich has conjectured that it is and gave

a proof for cocompact reflection groups.

The goal of this talk is to give a construction

which assigns to a cohomology class a geo-

metric object in the manifold which “explains”

the class and which (hopefully) can be used to

attack the integrability question.



The construction works by recasting in terms

of the second deformation problem mentioned

on the first slide. Namely, we will now view the

space H1(Γ,Rn+1) as the space of affine defor-

mations of the linear action of Γ on Minkowski

space:

Since Isom(Rn+1) ∼= O(n,1) ⋉ Rn+1, a repre-

sentation ρ : π1(M) → Isom(Rn+1) may be

decomposed into its linear and translational

parts:

If L : Isom(Rn+1) → O(n,1) takes an isometry

x 7→ Ax+ b to its “linear part” A, then

ρ(γ)x = L(ρ(γ))x+ tγ

where t : π1(M) → Rn+1 is a 1-cocycle;

tαβ = tα + L(ρ(α))tβ.



Construction, step one.

The group Γ acts discretely in the interior of
the future light cone, with quotient spacetime
M ×R (pictured for the surface case n = 2):

Some language: hyperbolic space is “space-
like”, so should be thought of as a copy of the
“universe” at some time. The interior of the
light cone is the “domain of dependence” gen-
erated by this universe; the maximal spacetime
in which all observers meet the fixed universe
exactly once. The boundary is the “causal
horizon”.



A class [c] ∈ H1(Γ,Rn+1) gives an affine de-
formation of Γ into Γ′; we need a deformation
of the spacetime as well.

This comes basically from the holonomy theo-
rem; it is useful to make things explicit though:
represent [c] by a Γ-equivariant de Rham 1-
form η on Hn; write η = dξ, where ξ is a vector-
valued function which can be used to deform
the inclusion of Hn into Rn+1.

The compactness of M guarantees that if η is
small enough the deformed copy of hyperbolic
space remains spacelike. For large cohomology
classes, scale down, deform as above, and scale
back up.

The “crooked plane” examples of Margulis,
Drumm, and Goldman show that cusps are a
problem in this construction. They deform the
(free) group Γ without a corresponding defor-
mation of the spacetime.



Construction, step two.

The deformed copy of hyperbolic space de-

pends on the choice of 1-form, but it generates

a new domain of dependence, which doesn’t

depend on choices (this is, in a sense, the

main theorem to the physicists; an infinite-

dimensional space of universes “washes out”

to a finite-dimensional collection).



Construction, step three.

Basic Lorentzian geometry (Hawking-Ellis) tells

you a lot about the structure of the causal

horizon. Each point is contained in a (fu-

ture) complete null ray. There is a well-defined

“spacelike part”, characterized e.g. as the set

of endpoints of these null rays.

Theorem. The causal horizon is convex with

null and spacelike support planes.

Recall that a spacelike plane defines a point

in hyperbolic space by taking a unit timelike

perpendicular.

Fix a point in the spacelike part. The set of

spacelike support planes containing this point

defines a subset of hyperbolic space which is

one of the strata of our stratification.



It is worth returning to the simplest examples.

Advanced geometric knowledge allows the “right”

geometric choice for bending; it is good fun to

do the same with, say, a harmonic 1-form as

constructed by Kudla-Millson and see how the

evolution of the spacetime “pulls it tight”.



Hopefully this convinces you that running the

construction for a class coming from “bend-

ing” reproduces the bending lamination. In

the case n = 2, you can then show the map

from H1(Γ,R3) to ML is one-one, giving a fun

proof that ML ∼= R6g−6 (and in fact that it’s

a vector space; Mess did this in 1990).

For n > 2, one might hope to define a space of

generalized bending laminations. There may

be no universal way of recognizing these un-

fortunately; e.g. one gets depressed quickly

thinking about which immersed totally geodesic

surfaces support cohomology classes.


