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The Problem

Let M = Γ\H3 be a finite volume oriented hy-

perbolic 3-manifold, so Γ is a lattice in SO(3,1).

The deformation theory of Γ within SO(3,1)

is well-known; if M has d cusps, then Γ has a

2d (real) dimensional character variety of de-

formations in SO(3,1) near the inclusion.

We are interested in the local deformation the-

ory of Γ in SO(4,1). By the holonomy theorem

this is equivalent to studying local deforma-

tions of the flat conformal (Möbius) structure

on M , or deformations of the “quasi-Fuchsian”

hyperbolic 4-manifold Γ\H4, etc.



Infinitesimal Version

A tangent vector to a curve of representations
amounts to an assignment c : Γ → so(4,1) of
a Lie algebra element to each element of Γ.
The condition that the relations in the group
hold to first order is the cocycle condition

c(ab) = c(a) + a · c(b)

and coboundaries correspond to curves of rep-
resentations obtained by conjugation.

Therefore H1(Γ, so(4,1)) can be thought of as
the space of first-order deformations of Γ in
SO(4,1), up to conjugation.

When M has cusps, we define a subspace con-
sisting of cocycles that are coboundaries when
restricted to any cyclic subgroup generated by
a parabolic (this is stronger than “parabolic
preserving”). Passing to cohomology we write
this subspace as PH1(Γ, so(4,1)).



A Splitting

Now as a Γ-module, the Lie algebra splits:

so(4,1) ∼= so(3,1)⊕R4

and therefore so does the cohomology

H1(Γ, so(4,1)) ∼= H1(Γ, so(3,1))⊕H1(Γ,R4).

By local rigidity,

H1(Γ, so(4,1)) ∼= H1(Γ,R4)

in the closed case. When there are d > 0 cusps

we have

PH1(Γ, so(4,1)) ∼= PH1(Γ,R4)

and

dimH1(Γ, so(4,1)) = 2d+(dimPH1(Γ,R4)+d).



The SO(4,1) “character variety”

The dimension just computed is the dimension

of the character variety at the inclusion. Unlike

the usual SO(3,1) case however, this variety is

singular.

The difference can be seen even looking at

the restriction to a peripheral Z⊕ Z subgroup.

In SO(3,1) the centralizer of nearby represen-

tations is always two-dimensional (commuting

parabolics or the stabilizer of a geodesic).

In SO(4,1) the centralizer at the parabolic rep-

resentation has one extra dimension, while at

nearby elliptic/hyperbolic pairs the centralizer

remains two-dimensional.



The figure-eight knot

One easy consequence of this singularity result

is the following:

Theorem. If M has one cusp and PH1(Γ,R4) =

0 then infinitely many Dehn fillings on M are

locally rigid in SO(4,1).

For example, a nice geometric argument of

Misha Kapovich shows that any two-bridge knot

or link complement satisfies PH1(Γ,R4) = 0.

In particular, consider the figure-eight knot com-

plement. We can do somewhat better in this

case:

Theorem All but finitely many fillings on the

figure-eight knot complement are are locally

rigid in SO(4,1).



A conjectural picture

What we’ve failed to understand so far is the

the correct local structure of the character va-

riety at the inclusion.



Bending classes

The main examples (and essentially only) ex-
amples of deformations in SO(4,1) have been
around for some time; these are the “bend-
ing deformations” coming from an embedded
totally geodesic surface.

This works in any dimension: a codimension
one surface splits the group as (say) an amal-
gamated product A ∗C B, and the deformation
can be obtained by conjugating A by the (one-
dimensional, elliptic) centralizer of C.

In our infinitesimal computations we work with
de Rham cohomology with coefficients in the
flat so(4,1) bundle (or R4 bundle) over M with
holonomy Γ.

Bending classes can be represented by 1-forms
dual to the bending surface, with values in R4

in the spacelike direction perp to the bending
surface.



Generalized bends

We began by trying to find examples of co-

homology classes supported on immersed to-

tally geodesic surfaces, or more generally on

“branched” totally geodesic surfaces of the kind

considered by Apanasov and Kapovich-Millson.

The figure-eight knot shows that even in the

presence of many immersed totally geodesic

surfaces one can fail to get any cohomology.

On the other hand, we have the following lower

bound:

Theorem. Suppose M contains a piecewise

totally geodesic hypersurface with c2 two di-

mensional components and c1 one-dimensional

components of the branch locus. Then the di-

mension of (P )H1(Γ,R4) is at least c2 − 2c1.



A partial converse

In earlier work I showed that a class in H1(Γ,R4)

gives rise to what a so-called generalized bend-

ing lamination in M .

The idea is originally due to Geoff Mess: use

the cohomology class to define an affine defor-

mation of Γ in the isometry group of Minkowski

space.

Then there is a canonical 1-form obtained by

considering the equivariant map from H3 to

the “causal horizon”. If the original class was a

bending deformation, this reproduces the bend-

ing hypersurface (hence the name).



An arithmetic example

In looking for concrete examples, we studied

the Bianchi groups Γd = PSL(2, Od) and their

finite index subgroups giving knot and links in

S3.

The idea is to look for deformation classes sup-

ported on subcomplexes of the Mendoza com-

plex. This is a certain arithmetically-defined

piecewise totally geodesic two-complex of the

orbifold Γd\H3.

It has been known for a while that the two-

component link 8214 can be obtained as an in-

dex twelve subgroup of Γ−7.



Supporting subcomplex



An older example

Not all examples come from branched totally

geodesic surfaces.

The k-fold cyclic branched covers of the figure-

eight knot k ≥ 4 satisfy dimH1(Γ,R4) = 2.

These manifolds have zero first Betti num-

ber; in fact the 4-fold cyclic branched cover

is non-Haken and contains no branched totally

geodesic surfaces.

These manifolds are also two-fold cyclic branched

covers of the Turk’s head links (starting with

818), and similar arguments show that these

knots and links satisfy dimPH1(Γ,R4) = 2.



Spine of 818

The computations for the Fibonacci manifolds

and Turk’s head links offer no insight into what

the generalized bending lamination looks like.

We performed computations similar to the ones

for 8214, by finding a piecewise totally geodesic

spine for 818 and computing representative classes

supported on the spine. The results were much

different.

It turns out that for this knot no representative

of a class in PH1 can be supported on a proper

subcomplex, and further that vectors assigned

to faces are sometimes timelike, unlike bending

classes.


