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Some Definitions

Minkowski space Rn
1 is just Rn equipped with the

standard signature (n− 1, 1) inner product:

〈v,w〉 = v1w1 + . . .+ vn−1wn−1 − vnwn.

A Lorentzian manifold is defined like a Rieman-
nian manifold, except the tangent spaces look
like Minkowski space instead of Euclidean space.
Lorentzian manifolds are models for general rela-
tivity:

v is spacelike if 〈v,v〉 > 0

v is timelike if 〈v,v〉 < 0

v is lightlike if 〈v,v〉 = 0.



Main Questions

A spacetime will be a compact Lorentzian mani-
fold with non-empty spacelike boundary.

I. What is the topology of the universe (i.e. the
topology of a “spacelike slice”)?

II. Describe the moduli space of Lorentzian met-
rics on a fixed topological type M3 × [0, 1] (or
M2 × [0, 1] as a non-trivial “warmup”).

III. Can the topology of the universe change?



Remarks On These Questions

I. Left to the physicists; e.g. N. Cornish and J.
Weeks suggest that the universe ought to be a
small-volume closed hyperbolic 3-manifold (“cir-
cles in the sky”). We assume all spacelike slices
are closed hyperbolic (2- or) 3-manifolds.

Motivation: the geometry of a hyperbolic man-
ifold gives substantial information about ques-
tions II and III; conversely (and more impor-
tantly) understanding the Lorentzian geometry of
M × [0, 1] can give information about the geome-
try and topology of M .

II. Here’s a more precise and tractable version:
describe the moduli space Λ(M) of constant cur-
vature Lorentzian metrics on M × [0, 1] which are
causally trivial: every world line crosses M × 1

2
exactly once.

The model space for flat Lorentzian manifolds
is Rn

1 . The model spaces for constant positive
and constant negative curvature are de Sitter and
anti-de Sitter space respectively.

III. Answer follows from II (more later).



Some Examples

A hyperbolic metric on Mn is given by a cocom-
pact lattice π1(M) ∼= Γ ⊂ O(n, 1); this is the
subgroup of isometries of Rn+1

1 fixing 0; the quo-
tient of the interior of the upper cone defines a
flat Lorentzian metric on M ×R.

We get a Teichmüller space’s worth of flat met-
rics when n = 2; a single example for n ≥ 3 by
Mostow rigidity.



Are there other examples?

A flat Lorentzian metric in Λ(M) defines a ho-
momorphism ρ : π1(M) → Isom(Rn+1

1 ). Let
L : Isom(Rn+1

1 ) → O(n, 1) take an isometry
Ax+ b to its “linear part” A. Then

ρ(γ)x = L(ρ(γ))x+ tγ

where t : π1(M)→ Rn+1
1 is a 1-cocycle;

tαβ = tα + L(ρ(α))tβ .

The examples from the previous page are those
for which tγ = 0 for all γ ∈ π1(M). With a little
more work one gets:

Theorem (Mess). “Yes” iff H1(M,Rn+1
1 ) 6= 0.



Cohomology Calculations

For n = 2, this cohomology group is easily com-
puted; it is 6g − 6 dimensional, where g is the
genus of M2.

For closed hyperbolic 3-manifolds M3, very lit-
tle is known. It was conjectured that the non-
vanishing of this cohomology group was equiva-
lent to the existence of a closed embedded quasi-
Fuchsian surface in M ; (unfortunately) this is
false:

Theorem (S.) The n-fold cyclic branched covers
of the figure-eight knot n ≥ 4 (the “Fibonacci
manifolds”) satisfy H1(M,Rn+1

1 ) 6= 0.

These manifolds have zero first betti number; in
fact the 4-fold cyclic branched cover is non-Haken.



Main Results for 2+1

A spacetime M × [0, 1] equipped with a metric in
Λ(M) embeds in a maximal spacetime homeomor-
phic to M×R. It is more convenient to work with
the moduli space of maximal spacetimes Λ̃(M).
Let Teich(M) denote the Teichmüller space of
a hyperbolic surface M , and ML(M) the space
of measured laminations. The following give an-
swers to questions II and III respectively.

Theorem (Mess; S.) Let M2 be a closed hyper-
bolic surface. In the flat and de Sitter cases,
Λ̃(M) is parameterized by Teich(M)×ML(M).

It turns out that up to a time reversal, every max-
imal spacetime is past complete but future incom-
plete. The future causal horizon has the structure
of an R-tree dual to some measured lamination;
this is the second component in the parameteriza-
tion. Other tools: Thurston’s parameterization of
projective structures and results on the “grafting
map” of Teich(M) (joint with M. Wolf).

Theorem (Mess; S.) Any 3-dimensional space-
time of constant curvature is homeomorphic to
M2 × [0, 1].


