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Definition: Suppose M is a smooth, orientable
n-manifold. A flat conformal structure on M is a
maximal atlas of charts φα : Uα → Sn such that
the transition maps are restrictions of Möbius
transformations.

From such a structure we get a developing map
dev : M̃ → Sn and a holonomy representation
ρ0 : π1(M)→Möb+(Sn).

SO0(n+ 1, 1) ∼= Isom+Hn+1

∼= Isom+
↑ Sn+1

1

∼= Möb+(Sn).



Examples

1. In the case n = 2 we have S2 = CP1 and
SO0(3, 1) ∼= PSL(2,C), so a flat conformal struc-
ture coincides with the classical notion of a pro-
jective structure on a Riemann surface.

2. When n ≥ 3, a manifold with a conformally
flat Riemannian metric has a compatible flat con-
formal structure (Liouville).

3. In particular, all constant curvature man-
ifolds have canonically associated flat conformal
structures, e.g. view Hn as a hemisphere of Sn

which is invariant under the subgroup

SO0(n, 1) ⊂ SO0(n+ 1, 1).

4. Other 3-dimensional geometries:

Yes: H2 ×R, S2 ×R
No: Nil, Solv (Goldman)
Maybe: UT (H2) (Gromov, Lawson, Thurston)



Deformation Spaces

Deformations of complete hyperbolic structures
of finite volume are well-understood, in the case
n = 2 by Teichmüller theory and for n ≥ 3 by
Mostow Rigidity.

Main Problem: Describe the deformation space
of flat conformal structures near the canonical
structure coming from a finite volume hyperbolic
manifold.

Let π1(M) ∼= Γ ⊂ SO0(n, 1) be the inclusion of
a lattice. Then, at least locally, the deformation
space of flat conformal structures is parameter-
ized by the representation variety

R(π1(M), SO0(n+ 1, 1))

(representations up to conjugation) near Γ.

Once again the case n = 2 is well-understood; it
reduces to the theory of quasi-Fuchsian deforma-
tions of Fuchsian groups.



Motivation

1. The existence of deformations is often reflected
the geometry and topology of the hyperbolic man-
ifold, e.g. most known examples of deformations
arise from the existence of a closed, embedded,
totally geodesic hypersurface (“bending”).

2. Conjecture [Menasco-Reid] No hyperbolic
knot complement contains a closed, embedded,
totally geodesic hypersurface.

3. An arbitrary flat conformal structure on M
yields, in a canonical way, a hyperbolic metric
and a dual de Sitter metric on M ×R.

Theorem [S, 1996] Every de Sitter spacetime
arises in this way; i.e. from a flat conformal struc-
ture at timelike infinity.



Sketch: Given a spacelike immersion D of M̃
into de Sitter space, there is a maximal domain
of dependence extending D with a causal hori-
zon H+(M). The general theory (Hawking/Ellis)
says that this horizon is made up of of future or
past complete null rays, from which we deduce
the local convexity of H+(M). The ε-timelike dis-
tant hypersurfaces are then strictly convex, which
gives an immersion into the sphere at timelike in-
finity via the Gauss map.

This theorem shows that the deformation space of
de Sitter metrics on M ×R is determined by the
deformation space of flat conformal structures on
M . This was our original motivation for studying
the latter.

Remark: We also obtain “no topology-change”
results for de Sitter spacetimes using this classi-
fication.



Cohomology

Returning to the Main Problem, we consider the
case n = 3, and write π = π1(M) for a closed
hyperbolic 3-manifold M .

The Zariski tangent space to R(π, SO0(4, 1)) at a
representation ρ0 is given by the group cohomol-
ogy:

H1(π, so(4, 1)) ∼= H1(π, so(3, 1))⊕H1(π,R4
1)

∼= H1(π,R4
1).

Here the coefficients lie in the Lie algebra so(4, 1)
which is made into a Zπ-module via ρ0 and the
adjoint representation. We call a non-zero cocycle
in H1(π,R4

1) an infinitesimal deformation of the
flat conformal structure on M .



Fibonacci manifolds and Turk’s head links

The Fibonacci groups are defined by:

F (2, n) = {a1, . . . , an | aiai+1 = ai+2}.

The groups F (2, 2m) for m ≥ 4 are the funda-
mental groups of closed hyperbolic 3-manifolds
Fm (Helling, Kim, Mennicke, 1989).

These manifolds can be described as branched
covers of links in S3 in several different ways,
e.g. Fm is the m-fold cyclic branched cover of
the figure-eight knot, and also the 2-fold branched
cover of the Turk’s head link Bm:



Main Result

Theorem [S, 1997] For all m ≥ 4,

dimRH
1(Fm,R

4
1) = 2.

Idea of proof: Use the description of Fm as the
2-fold branched covering of a closed 3-braid to get
an upper bound on the dimension of this coho-
mology group. The symmetry of the presentation
gives an automorphism of F (2, 2m) which induces
a certain linear transformation of R4

1×R4
1. Eigen-

values which are 2m-roots of unity determine co-
cycles, and these can be calculated directly.



Remarks

1. Kapovich has conjectured that for a closed, hy-
perbolic 3-orbifold M , this cohomology group will
be non-trivial if and only if M contains a closed,
embedded, quasi-Fuchsian suborbifold. But the
manifold F4 is non-Haken, and contains no closed
immersed totally geodesic surface.

2. This also can be contrasted with the theorem
of Ghys and Rajan that the complex structure on
Γ\SL(2,C) deforms if and only if the first Betti
number β1(Γ) 6= 0.

3. The volume of F4 is the same as the figure-
eight knot (2.02988 . . .). We conjecture that it is
the smallest hyperbolic 3-manifold with infinites-
imal deformations (previous best was 3.226 . . .).

4. Similar non-vanishing theorems are true for
the Turk’s head links (in parabolic cohomology);
nevertheless, the Menasco-Reid conjecture can be
verified directly for these examples. True up to
ten crossing knots.


