
FLAT CONFORMAL STRUCTURES AND THE CLASSIFICATION OF

DE SITTER MANIFOLDS

KEVIN P. SCANNELL

Abstract. Given a compact n-manifold Σ with a flat conformal structure, there is a
canonical procedure for constructing an associated (n + 1)-dimensional de Sitter space-
time homeomorphic to Σ× (0,∞); we call these standard de Sitter spacetimes. Our main
theorem is a classification of compact de Sitter manifolds; it asserts that every de Sitter
spacetime which is a small regular neighborhood of a closed spacelike hypersurface isomet-
rically embeds in a standard de Sitter spacetime. This complements results of G. Mess in
the flat and anti-de Sitter cases.

1. Introduction

A spacetime is a connected, smooth n-manifold with a metric of Lorentzian signature
(n − 1, 1). For simplicity we will restrict our attention to spacetimes which are orientable
and time-orientable. A de Sitter (resp. flat, anti-de Sitter) spacetime is a spacetime of
constant positive (resp. zero, negative) curvature. Mess [23] has classified all compact
(2+1)-dimensional flat and anti-de Sitter spacetimes which are domains of dependence (see
§3), answering a question of Witten [29]. Our main theorem extends the classification to
the de Sitter case.

The paper of Mess relies on the techniques of [4], in which it is shown that a closed flat
spacetime is geodesically complete. Klingler [17] has recently generalized this argument
to work for all constant curvature spacetimes (see also [24]). This allows one to deduce,
for instance, that there are no closed de Sitter spacetimes (because no infinite group of
isometries acts discontinuously on de Sitter space [30, §11.1]). The groups of isometries
acting cocompactly on flat Minkowski space or anti-de Sitter space have been widely studied;
see [8], [12], [10], [21] for more information.

In this paper, we study the case of compact spacetimes with non-empty, spacelike bound-
ary. These are called spacetime-bordisms, viewed as bordisms between their past and fu-
ture boundary components. Our general approach to classifying spacetime-bordisms is to
first describe those which are domains of dependence (in particular these are topologically
products Σ × R with spacelike slices). One would then like to show that an arbitrary
spacetime-bordism of constant curvature is in fact a domain of dependence, as in [23]. Our
main theorem completes the first part of this program in the remaining case of de Sitter
spacetime-bordisms (Theorem 1.1). It turns out, however, that there are simple examples
of de Sitter spacetime-bordisms which are not domains of dependence; these are discussed
in the final section.
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To state our classification theorem, we need a construction due to Thurston. Suppose
Σ is a compact n-manifold without boundary, equipped with a flat conformal (Möbius)
structure. In unpublished work, Thurston has shown how to “thicken” a developing map
dev : Σ̃ → Sn of the flat conformal structure to obtain an equivariant immersion D :
Σ̃ × (0,∞) → Hn+1, and hence a hyperbolic metric on Σ × (0,∞). In dimension two,
this was used by Thurston to parameterize CP 1-structures on Σ by the space of measured
geodesic laminations on Σ (these arise as “bending laminations” on the frontier of the
image of D). The projective dual of this construction provides an equivariant immersion of

Σ̃×(0,∞) into (n+1)-dimensional de Sitter space, inducing a de Sitter metric on Σ×(0,∞);
the spacetimes obtained in this way are the standard de Sitter spacetimes, constructed in
detail in §5.

Theorem 1.1. Every de Sitter spacetime which is a small regular neighborhood of a compact
spacelike hypersurface isometrically embeds in a standard de Sitter spacetime.

The first two sections contain background material on geometric structures (§2) and
causality in Lorentzian manifolds (§3). We proceed to describe the canonical decomposition
of a flat conformal manifold (§4), and how it gives rise to a standard de Sitter spacetime (§5).
This is followed by some convexity properties in constant curvature spacetimes which yield
our main result; many of these results work in the flat and anti-de Sitter cases, simplifying
some of the arguments in [23]. We conclude with a brief discussion of when a de Sitter
spacetime-bordism is a domain of dependence.

I would like to thank my thesis advisor Geoffrey Mess for his support and many helpful
discussions concerning this work. Thanks also to Robert Greene, Lai-Sang Young, and Bob
Edwards.

2. Geometric Structures and Deformation Spaces

Good references for the material presented in this section are [3], [11], and [28]. Suppose
G is a Lie group which acts faithfully, transitively, and analytically on a manifold X. Let
M be a connected C0,1 manifold, possibly with boundary, with a fixed basepoint m0 ∈M .
By convention, the universal cover a space will always be indicated by the addition of a
tilde, so M̃ denotes the universal cover of M .

A based (G,X)-structure on M is a pair (f, φ) consisting of a C0,1 local embedding

f : M̃ → X, and a homomorphism φ : π1(M,m0)→ G satisfying:

(2.1) f(γ · x) = φ(γ) · f(x),

for all γ ∈ π1(M,m0) and all x ∈ M̃ (we say f is φ-equivariant). The homomorphism
φ is called the holonomy representation of the based (G,X)-structure, and f is called the
developing map. Let D(G,X)(M) denote the set of based (G,X)-structures onM , identifying
pairs which differ by the action of a diffeomorphism g : (M,m0)→ (M,m0) isotopic to the
identity rel m0. The deformation space T(G,X)(M) of (G,X)-structures on M is defined
to be the quotient of D(G,X)(M) under conjugation by G. A (G,X)-manifold is a pair

consisting of a connected, C0,1 manifold M and a point in T(G,X)(M). We will habitually
abuse terminology by referring to an element of T(G,X)(M) by a representative based (G,X)-
structure.
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Our primary examples of geometric structures will come from the constant curvature
Riemannian and Lorentzian model spaces. Fix integers 0 ≤ k ≤ n with n ≥ 2, and define
Rn
k to be the space Rn equipped with the signature (n− k, k) inner product

(2.2) 〈v,w〉 = −
k

∑

i=1

viwi +
n

∑

j=k+1

vjwj .

When k = 1, we call Rn
1 (flat) Minkowski space. Recall that a vector v ∈ Rn

1 is said to be:

• spacelike if 〈v,v〉 > 0;
• null or lightlike if 〈v,v〉 = 0;
• timelike if 〈v,v〉 < 0;
• causal if 〈v,v〉 ≤ 0.

Define:

(2.3) Sn1 = {v ∈ Rn+1
1 | 〈v,v〉 = 1}.

Sn1 is our model of n-dimensional de Sitter space; it inherits a Lorentzian metric of constant
curvature +1. Note that Sn1 is homeomorphic to Sn−1×R, and admits a natural conformal
compactification Sn1 ≈ Sn−1 × [0, 1] by (n− 1)-spheres ∂−∞Sn1 and ∂+∞Sn1 at past and future
infinity respectively.

An alternative model of de Sitter space is constructed by means of the natural projection
$ : Rn+1

1 \ {0} → RP n. Define (Hn)∗ to be the image in RP n of the spacelike vectors

of Rn+1
1 ; we call (Hn)∗ the projective model of de Sitter space. Recall that the image in

RPn of the timelike vectors of Rn+1
1 is the usual projective (Klein) model of n-dimensional

hyperbolic space Hn, with the projectivized null vectors corresponding to the sphere at
infinity ∂∞Hn; thus ∂∞Hn simultaneously compactifies Hn and (Hn)∗. The advantage
of this model is that we may exploit the projective duality between k-planes in Hn and
(n−k−1)-planes in (Hn)∗ to transfer certain standard constructions from hyperbolic space
to de Sitter space (compare [5],[15],[26]).

In light of the above discussion, we will be considering families of (G,X)-manifolds with
G = SO0(n, 1), the identity component of O(n, 1). This group is simultaneously isomorphic
to the group Isom+(Hn) of orientation-preserving isometries of Hn, the groupMöb+(Sn−1)
of orientation-preserving Möbius transformations of Sn−1, and the group Isom+

↑ (S
n
1 ) of

orientation-preserving, orthochronous isometries of Sn1 . Corresponding to these three iden-
tifications, we have the following examples of (G,X)-structures on an orientable n-manifold:

• A hyperbolic structure is an (SO0(n, 1),H
n)-structure. The existence of a hyperbolic

structure on an orientable n-manifold is equivalent to the existence of a Riemannian
metric of constant negative curvature.

• A flat conformal structure is an (SO0(n+1, 1),Sn) structure. In dimension two this
is simply the classical notion of a projective or CP 1-structure on a Riemann surface.
For n ≥ 3, Liouville’s Theorem states that a conformal diffeomorphism of domains
in Sn is the restriction of a Möbius transformation. It follows that a flat conformal
structure is equivalent to a (locally) conformally flat Riemannian metric [18], [22].

• A de Sitter structure is an (SO0(n, 1),S
n
1 )-structure.
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We will use the abbreviations Hn(M), C(M), and Sn1 (M) for the respective deformation
spaces T(G,X)(M) of hyperbolic, flat conformal, and de Sitter structures on an n-manifold
M .

3. Elementary Causality

Let M be a spacetime, and consider a point x ∈ M. Define I+(x) to be the set of
points p ∈ M such that there exists a non-trivial past-pointing timelike curve from p to x
(whenM = Sn1 , this definition works equally well for points x ∈ ∂−∞Sn1 ). If Σ is a subset of
M, let I+(Σ) = ∪x∈ΣI

+(x). The set I+(Σ) is clearly open, and is called the chronological
future of Σ in M. The chronological past I−(x) is defined by replacing “past-pointing”
with “future-pointing” in the definition of I+(x); similarly, define I−(Σ) = ∪x∈ΣI

−(x).
The future domain of dependence D+(Σ) is defined to be the set of points p ∈M such that
every inextendible past-pointing causal curve starting at p intersects Σ. The future Cauchy
horizon is given by

(3.1) H+(Σ) = D+(Σ) \D+(Σ).

The sets D−(Σ) and H−(Σ) are defined analogously. We say Σ is achronal (resp. acausal)
if no timelike (resp. causal) curve intersects Σ more than once. Finally, Σ is called a
global Cauchy hypersurface for M if it is a closed, spacelike, acausal hypersurface, and
M = D+(Σ) ∪ D−(Σ); when such a hypersurface exists M is said to be a domain of
dependence.

Lemma 3.1. [25, Ch. 14, Lemma 43] If Σ is a closed acausal hypersurface, then D+(Σ)∪
D−(Σ) is open.

If we are given a closed, spacelike, acausal hypersurface Σ ⊂ M, then to show Σ is a
global Cauchy hypersurface forM it suffices by this lemma to show thatH+(Σ) = H−(Σ) =
∅. Showing that the Cauchy horizons vanish is facilitated by the following elementary
characterization of H+(Σ), which can be assembled from the standard references (e.g. [14,
Ch. 6], [25, Ch. 14], [2]).

Lemma 3.2. Suppose Σ is a closed acausal hypersurface. Then if H+(Σ) is non-empty, it
is a closed achronal C0,1 hypersurface disjoint from Σ. Furthermore, a point x is in H+(Σ)
if and only if the following two conditions hold:

• every inextendible past-pointing timelike curve starting at x intersects Σ;
• there exists an inextendible past-pointing null geodesic ray starting at x which lies
entirely within H+(Σ).

Here and in what follows, our results are stated for the future Cauchy horizon H+(Σ),
the statements for H−(Σ) being completely analogous. The null geodesic rays given by
Lemma 3.2 are called the null generators of H+(Σ).

We will now specialize the discussion of causality to the special case of hypersurfaces in
constant curvature spacetimes. A spacelike de Sitter hypersurface is a compact, oriented,
smooth n-manifold Σ without boundary, equipped with a based (SO0(n + 1, 1),Sn+11 )-
structure (f, φ) such that f is a spacelike immersion; it follows that Σ inherits a well-defined
complete Riemannian metric. Similarly there are notions of spacelike flat hypersurface and
spacelike anti-de Sitter hypersurface.
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Given a spacelike de Sitter hypersurface Σ, let M = Σ × (0,∞) and define D(Σ) ⊆
Sn+11 (M) to be the set of all de Sitter structures on M such that there exists an isometric
embedding of Σ as a global Cauchy hypersurface forM. The set D(Σ) is partially ordered
by inclusion, and we obtain by Zorn’s Lemma a maximal element Mmax(Σ). From the
existence of the developing map, one sees that the “germ of extensions” is unique; i.e. for
any two elements M1,M2 ∈ D(Σ) there exist M3 ∈ D(Σ) and isometric embeddings of
M3 in bothM1 andM2. Using this fact and an argument of Choquet-Bruhat and Geroch
[14, §7.6]), one can show that every element of D(Σ) isometrically embeds inMmax(Σ). We
identify Σ with its image inMmax(Σ). Again, a similar construction works for the flat and
anti-de Sitter cases. The spacetime Mmax(Σ) is called the maximal domain of dependence
for Σ. By a result of Geroch [9], it is homeomorphic to Σ×R in such a way that each slice
Σ× {t} is a global Cauchy hypersurface.

If Σ̃ is the universal cover of a spacelike de Sitter (resp. flat, anti-de Sitter) hypersurface,

one can also define a maximal domain of dependence Mmax(Σ̃), which coincides with the
universal cover ofMmax(Σ). When the future frontier of the developing image is non-empty,

it is possible to attach a boundary with nice causal properties to Mmax(Σ̃):

Proposition 3.3. Suppose Σ is a spacelike de Sitter hypersurface. Then either Mmax(Σ)

is future complete or elseMmax(Σ̃) embeds in a de Sitter spacetime in which the following
conditions hold:

(1) H+(Σ̃) is non-empty;

(2) Every null generator of H+(Σ̃) is past complete;
(3) Every null generator is either future complete or contains a future endpoint.

Proof. Let dev :Mmax(Σ̃)→ Sn+11 denote the developing map (here we have used the fact

that Mmax(Σ̃) ≈ Σ̃ × R is simply-connected). Assume there exists a future incomplete
timelike curve in Mmax(Σ). The argument for Lemma 3.2 also shows that the future

frontier of dev(Mmax(Σ̃)) is locally a Lipschitz submanifold of Sn+11 . In this way, we can

form a manifold with boundaryM′ =Mmax(Σ̃)∪H, equipped with the obvious extension
of the developing map. (The set H can also be thought of as the collection of “terminal
indecomposable past sets” corresponding to future incomplete timelike rays as in [14, §6.8]).
Because Mmax(Σ̃) is a maximal domain of dependence, H = H+(Σ̃) in M′.

Consider an arbitrary point x ∈ H+(Σ̃) lying on a null generator λ. Let {βj} be a
sequence of inextendible past-pointing timelike curves starting at x and approaching λ.
Suppose λ is past incomplete, and let p ∈ Sn+11 be the past endpoint of dev(λ). It follows
that only finitely many of the curves dev(βj) enter I−(p), or else we could construct a
timelike curve back in M′ corresponding to the missing endpoint of λ. Thus infinitely
many of the dev(βj) meet dev(Σ̃) before reaching I−(p); this contradicts the completeness

of Σ̃.
Consider a sequence of points xj which lie on a null generator for H+(Σ̃) such that xj is

to the past of xj+1, and suppose dev(xj)→ p. Take a past-pointing timelike segment from

each point xj , so that the endpoints form a timelike-separated sequence {zj} in Mmax(Σ̃)
and dev(zj) → p. These points can be joined by a future-pointing timelike curve whose
equivalence class is the limit of the xj . We conclude that the null generators are closed sets
and (3) follows. ¤
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When Mmax(Σ) fails to be future complete, the spacetime given by Proposition 3.3 will

be denotedMmax(Σ̃). It should be noted that the above discussion greatly simplifies in the
flat and anti-de Sitter cases. For instance, an easy argument shows that in these cases the
developing map from the universal cover of a closed spacelike hypersurface is an achronal
embedding [13]. The existence of exotic developing maps into Sn1 is the main difficulty one
encounters is extending the results of [23].

The following elementary proposition will come in handy during the proof of the main
theorem.

Proposition 3.4. Let λ be a past complete null ray in Sn1 or Rn
1 . Then there is a unique

degenerate hyperplane N containing λ and I+(λ) = I+(N).

Proof. Consider first the case when λ ⊂ Rn
1 ; without loss of generality we may assume λ

is a line through the origin in the direction of some past-pointing null vector n ∈ Rn
1 . Let

N = n⊥; that is, the subspace

(3.2) n⊥ = {v ∈ Rn
1 | 〈n,v〉 = 0}.

It follows easily that N is the unique degenerate hyperplane containing λ, and that

(3.3) I+(N) = {v ∈ Rn
1 | 〈n,v〉 > 0}.

Clearly I+(λ) ⊆ I+(N); for the converse, consider a point w ∈ I+(N). It suffices to find a
point p ∈ λ with 〈w − p,w − p〉 < 0. We have

(3.4) 〈w − tn,w − tn〉 = 〈w,w〉 − 2t〈w,n〉,

and 〈w,n〉 > 0, so choosing t > 0 large enough gives our desired vector p.
In de Sitter space Sn1 , the degenerate k-planes are precisely the intersections with Sn1 of

the degenerate (k+1)-planes through the origin in Rn+1
1 . Using this remark, the result for

de Sitter space follows easily. ¤

4. The Canonical Stratification

Throughout this section, we let Σ denote a compact, connected n-dimensional manifold
without boundary. Let D∞ : Σ̃→ Sn be a developing map and φ a holonomy representation
for a flat conformal structure on Σ. A construction originally due to Thurston (unpublished,
see [16]) and extended by Kulkarni-Pinkall [19, 20] and Apanasov [1] produces a canonical
decomposition of Σ with respect to this structure. This technique will be used to construct
families of hyperbolic and de Sitter structures on Σ× (0,∞) parameterized by C(Σ). Our
presentation follows [20].

We begin by using D∞ to pull back the usual metric on Sn to a metric on Σ̃, and

considering the metric space completion Σ̃ of Σ̃. There is a unique continuous extension

D∞ : Σ̃→ Sn of D∞. A subset U ⊂ Σ̃ is an open round ball if D∞ maps U homeomorphi-

cally onto an open round ball in Sn. Given an open round ball U in Σ̃, the closure U in Σ̃
maps homeomorphically to a closed round ball in Sn, hence U is conformally equivalent to
compactified hyperbolic space Hn ∪ ∂∞Hn. We may therefore transfer the usual notion of
“hyperbolic convex hull” to U ; let U∞ = U \ Σ̃ and let C(U) denote the intersection of U
and the convex hull of U∞ in U (note that C(U) = ∅ if and only if U∞ has fewer than two
points).
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Proposition 4.1. Exactly one of the following holds:

(1) Σ̃ ∼= Sn with the obvious flat conformal structure;

(2) Σ̃ ∼= En = Sn \ {∞};
(3) For every p ∈ Σ̃, there exists a unique open round ball Up such that p ∈ C(Up).

Proof. Fix p ∈ Σ̃, and let Wp be the union of all open round balls containing p (this set is
non-empty because D∞ is a local diffeomorphism). One checks easily that the restriction
of D∞ to Wp is injective, because D∞ is injective on the union of any two open round balls
meeting in a “spherical lens”. Let F = Sn \D∞(Wp); this set is the intersection of closed
round balls in Sn, and is therefore a closed convex set. Suppose F has fewer than two
points. Then Wp is conformally equivalent to either Sn or En, and if the dimension of Σ̃

is at least two it follows that Σ̃ = Wp
∼= Sn or En (in the one-dimensional case, we obtain

the same conclusion without necessarily having Σ̃ = Wp). We shall assume therefore that
F has at least two points and without loss of generality that D∞(p) =∞ ∈ Sn, so we can
view F as a subset of En = Sn \ {∞}. Hence there exists a unique closed round ball B
of least radius containing F ; since D∞ is injective on Wp, the set Up = D−1

∞ (Sn \ B) is an

open round ball in Σ̃. We claim p ∈ C(Up).

By tracing through the definitions, we have that D∞((Up)∞) = F ∩∂B and so p ∈ C(Up)
if and only if D∞(p) is in the convex hull of F ∩ ∂B (taken in the complement of B). By
inversion in ∂B, this in turn is equivalent to the Euclidean center of B lying in the convex
hull of F ∩ ∂B (taken in B). If this failed to hold however, one could construct a closed
round ball of lesser radius containing F .

Uniqueness of Up is clear, the cogent remark being that for any pair of open round balls
U1 and U2 in Sn, the convex hull of ∂U1 \ U2 in U1 and the convex hull of ∂U2 \ U1 in U2
must be disjoint. ¤

The flat conformal structure is said to be of elliptic type, parabolic type, or hyperbolic
type, depending on whether (1), (2), or (3) holds in the statement of Proposition 4.1. In

the case of hyperbolic type, the decomposition Σ̃ =
⋃

p∈Σ̃C(Up) is called the canonical

stratification of Σ̃; each C(Up) is a called a stratum. The set of strata is written S. Note

finally that this decomposition is equivariant with respect to the action of π1(Σ) on Σ̃, and
so there is an induced stratification of Σ.

5. Standard de Sitter Spacetimes

A C1 path α : [0, 1]→M in a spacetime M has length defined by

(5.1) L(α) =

∫

α

|〈α̇, α̇〉|
1

2

An admissible spacelike partition (resp. timelike, causal) for a continuous path α : [0, 1]→
M is a finite partition 0 = t0 < t1 < · · · < tk−1 < tk = 1 such that for every j ∈ 0, . . . , k−1,
the points α(tj) and α(tj+1) can be joined by a spacelike (resp. timelike, causal) segment
[α(tj), α(tj+1)] in a convex normal neighborhood of α(tj). A continuous path α : [0, 1]→M
is said to be spacelike (resp. timelike, causal) if it has arbitrarily fine admissible spacelike
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(resp. timelike, causal) partitions. When this is the case, we can define the length of such
a path as an infimum over all admissible partitions of the appropriate type:

(5.2) L(α) = inf{L[α(t0), α(t1)] + · · ·+ L[α(tk−1), α(tk)]}.

Note that it makes sense to define the length using the infimum versus the supremum,
because L satisfies the reverse triangle inequality, so refining a partition reduces the sum
in (5.2).

The timelike separation of points x, y ∈M is defined to be:

(5.3) τ(x, y) = sup{L(α) | α is a causal curve joining x and y}

If there are no causal curves joining x and y, then we set τ(x, y) = 0. One verifies easily
that τ is symmetric and also satisfies the reverse triangle inequality.

For each x ∈ ∂+Sn1 fix a future-pointing timelike geodesic c with arclength parameter
which converges to x and define the timelike horofunction τ x : I−(x)→ (0,∞) by:

(5.4) τx(y) = lim
t→∞

τ(y, c(t))− t.

Using the reverse triangle inequality, the expression on the right-hand side increases in t
and is bounded above, so the limit exists. The function so-defined is independent of the
choice of c up to an additive constant.

Now let Σ denote a compact n-manifold without boundary, with a fixed flat conformal
structure (D∞, φ) ∈ C(Σ) of hyperbolic type, and space of strata S in Σ̃. We start the
construction of the standard de Sitter spacetimes by defining a map D∗

0 : S → (Hn+1)
∗
.

Recall that each stratum s ∈ S corresponds to a unique open round ball U ⊂ Σ̃; the
set ∂D∞(U) bounds a hyperplane in Hn+1 which determines the desired point D∗

0(s) in
(Hn+1)

∗
. Clearly nearby pairs of points in the image of this map are spacelike-separated,

for if not, the open round ball corresponding to one of the points would be contained in
the interior of the other (with perhaps one common boundary point) – this is impossible if
each open round ball defines a non-empty stratum. It follows that any path in S maps to
a continuous spacelike path in de Sitter space, and therefore has an induced length. This
defines a metric space structure on S.

Next note that there is a canonical map from Σ̃ to S, given by p 7→ C(Up); the composi-

tion with D∗
0 defines a map of Σ̃ into (Hn+1)

∗
, which by abuse of notation we again denote

D∗
0. Define a map D∗ : Σ̃× (0,∞)→ (Hn+1)

∗
by sending (p, t) to the point on the unique

timelike ray from D∗
0(p) to D∞(p) satisfying τ(D∗

0(p), D
∗(p, t)) = t. This map can be lifted

to Sn+11 in such a way that as t→∞ the image approaches past infinity; we also write D∗

for the lifted map.
If Σ is of parabolic type and x ∈ Sn is the point missed by D∞, then we can define

D∗ : Σ̃ × (0,∞) → Sn+11 by sending (p, t) to the point on the unique timelike ray from

x ∈ ∂+∞Sn+11 to D∞(p) ∈ ∂−∞Sn+11 satisfying τx(D
∗(p, t)) = − log t (since τ is only well-

defined up to an additive constant, D∗ in this case is well-defined up to a multiplicative
rescaling of (0,∞)).

Finally, if Σ is of elliptic type, then we use the homeomorphism of Sn+11 with Sn × R

(coming from its embedding in Rn+2
1 ) to define D∗; as above we simply rescale (0,∞) by

t 7→ − log t.
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By an abuse of notation, the composition π1(Σ× (0,∞)) ∼= π1(Σ)
φ
→ SO0(n, 1) will also

be denoted φ.

Proposition 5.1. The pair (D∗, φ) defines a de Sitter structure on Σ × (0,∞) which is
past complete. For every t ∈ (0,∞), the slice Σ× {t} is a global Cauchy hypersurface.

Proof. We will first show that D∗ is a φ-equivariant C1 immersion. This is clear in the
elliptic and parabolic cases; we may therefore restrict our attention to the case that Σ
is of hyperbolic type. It has already been remarked that the canonical stratification is
equivariant, so given γ ∈ π1(Σ) and p ∈ Σ̃, we have C(Uγ·p) = γ ·C(Up). The φ-equivariance
of D∞ then implies that D∗

0 and hence D∗ are also φ-equivariant. The differentiability of
D∗ can be proven by adapting the dual argument of Bowditch found in [7].

The proof that each slice is a global Cauchy hypersurface requires no further mention of
the specific de Sitter structure involved. A slice Σ× {t0} is a closed spacelike hypersurface
by construction, and is clearly acausal since it is spacelike and separates Σ × (0,∞). By
Lemma 3.1, D+(Σ×{t0})∪D

−(Σ×{t0}) is open, so it suffices to show that this set is also
closed. We will show H+(Σ × {t0}) = H−(Σ × {t0}) = ∅. In light of Lemma 3.2, let β be
a null geodesic and define L = {t ∈ (0,∞) | β ∩ (Σ× {t}) 6= ∅}. This set is non-empty and
clearly open because each slice is spacelike and β is a null curve. Suppose {tj} is a sequence
of points in L converging to some value t ∈ (0,∞); then by compactness of the slices, there
is some point z ∈ Σ×{t} such that β enters arbitrarily small convex normal neighborhoods
of z. Again using the fact that the slices are spacelike, this forces β to intersect Σ × {t},
and so L is closed. We conclude L = (0,∞), finishing the proof. ¤

Proposition 5.1 provides a well-defined map Ω+ : C(Σ)→ Sn+11 (Σ×(0,∞)). By reversing
the time-orientations in each case (e.g. in the hyperbolic case, choosing the other possible
lift of D∗ from (Hn+1)

∗
to Sn+11 ), we obtain a second family of de Sitter structures and

a map Ω− : C(Σ) → Sn+11 (Σ × (0,∞)). We say M is a standard de Sitter spacetime if
M ≈ Σ × (0,∞) and M is equipped with a de Sitter structure in Ω+(C(Σ)) ∪ Ω−(C(Σ)).
In this case, Proposition 5.1 also shows that for every t ∈ (0,∞), the slice Σ × {t} is a
spacelike de Sitter hypersurface in the sense of §3. By construction, it is also clear that
Mmax(Σ×{t}) = Σ× (0,∞). A standard de Sitter spacetime is said to be hyperbolic (resp.
parabolic, elliptic) if it comes from a flat conformal structure of hyperbolic (resp. parabolic,
elliptic) type.

There is a dual construction of a hyperbolic metric on Σ× (0,∞) arising from a flat con-
formal structure on Σ. When Σ is two-dimensional, this yields Thurston’s parameterization
of CP 1-structures by measured geodesic laminations; the space of strata in this case is an
R-tree. These matters are discussed at length in [27] and [20].

6. Convexity Properties

Recall that a spacelike or timelike geodesic in a Lorentzian manifold may be parameter-
ized in proportion to arclength in the usual way, while a natural choice of parameter for a
null geodesic only exists up to an affine change of coordinates. The following lemma is the
dual of an analogous statement for hyperbolic space; the proof itself is precisely dual to the
one given by Douady in [6] for geodesics in H2.
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Lemma 6.1. Suppose α : [0, 1] → Sn1 and β : [0, 1] → Sn1 are spacelike or null segments
with arclength or affine parameterizations such that for all t ∈ [0, 1] we have τ(αt, βt) > 0.
Then the function t 7→ −τ(αt, βt) is strictly convex.

Proof. We view all points of Sn1 as totally geodesic hyperplanes in Hn. With this in mind,
define σα ∈ O(n, 1) to be the reflection in the hyperplane α 1

2

; this isometry interchanges

α0 and α1. Define σβ similarly, and let δ be the common perpendicular geodesic to α 1

2

and

β 1

2

. Note that δ is invariant under both σα and σβ , hence also under σβσα. The critical

remark is that the function τ(−, σβσα−) on de Sitter space achieves its minimum precisely
on those hyperplanes perpendicular to δ (equivalently, on the (n − 2)-plane in de Sitter
space dual to δ). Thus:

τ(α1, β1) + τ(α0, β0) = τ(α1, β1) + τ(σαα1, σββ1)

= τ(α1, β1) + τ(σβσαα1, β1)

≤ τ(α1, σβσαα1)

< τ(α 1

2

, σβσαα 1

2

)

= τ(α 1

2

, σβα 1

2

)

= τ(α 1

2

, β 1

2

) + τ(β 1

2

, σβα 1

2

)

= 2τ(α 1

2

, β 1

2

).

(6.1)

¤

A hypersurface Σ in a de Sitter spacetime is locally convex from the future if at every
point x ∈ Σ there is a null or spacelike support plane such that a neighborhood of x in Σ
lies on or in the past of the support plane. Similarly, Σ is locally strictly convex from the
future if the support planes meet Σ locally in a single point. The application of Lemma 6.1
which we will need is the following:

Proposition 6.2. Let Σ be a spacelike de Sitter hypersurface identified with its image
in Mmax(Σ). Suppose that H

+(Σ̃) ⊂ Mmax(Σ̃) is non-empty and locally convex from

the future, with degenerate support planes corresponding to the null generators of H+(Σ̃).

Then a neighborhood in the past of H+(Σ̃) is foliated by global Cauchy hypersurfaces for

Mmax(Σ̃) which are locally strictly convex from the future and which project to global Cauchy
hypersurfaces forMmax(Σ).

Proof. We begin by assuming that Σ is simply-connected, and so H+(Σ) has the properties
guaranteed by Proposition 3.3. Define the time-to-horizon function τH+ : D+(Σ)→ (0,+∞]
by setting

(6.2) τH+(x) = sup{τ(x, y) | y ∈ H+(Σ)}.

We claim that if τH+(x) = +∞ at any point x ∈ D+(Σ), then τH+ ≡ +∞ on all of D+(Σ).
The set of points where τH+ equals infinity is clearly open, so consider a point x0 such that
τH+(x0) < +∞. The future-pointing timelike rays from x0 all meet H+(Σ) in finite time,
so by the local convexity of H+(Σ) the same holds for the future-pointing null rays from
x0. There exist local spacelike or null support planes at these intersection points, which
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extend slightly outside of I+(x0). This forces τH+ < +∞ on a neighborhood of x0, proving
the claim.

So now suppose τH+ ≡ +∞ on all of D+(Σ). It follows that every null generator of
H+(Σ) is future complete; for if some null generator λ had a future endpoint p ∈ H+(Σ),
then we could find a spacelike local support plane at p, which would force points in a small
enough neighborhood in the past of p to satisfy τH+ < +∞. These points lie in D+(Σ)
however, a contradiction. Given a future complete null generator λ, let N be the unique
degenerate hyperplane containing dev(λ); this is a future local support plane for the image
of H+(Σ) by hypothesis. But if a point of H+(Σ) near λ develops to the past of N , we
can apply the time reverse of Proposition 3.4 to see I−(N) = I−(dev(λ)). Thus we can
find a past-pointing timelike curve in M joining two points of H+(Σ); this contradicts
the achronality of H+(Σ). We conclude that the entire connected component of H+(Σ)
containing λ develops into N , and so we can take as our global Cauchy hypersurfaces the
level sets of a timelike horofunction for the future endpoint z of dev(λ) on ∂+∞Sn1 . One
checks easily that these surfaces are locally strictly convex from the future (they are, in
fact, dual to the horospheres based at z ∈ ∂∞Hn, which are clearly strictly convex).

Finally, we may assume that τH+ < +∞ on all of D+(Σ). In this case there is a
continuous “farthest-point retraction” r : D+(Σ) → H+(Σ); the proofs of existence and
continuity are dual to the analogous proofs for hyperbolic space which can be found in [7].
We claim that the level sets τ−1

H+(t) for small values of t foliate a neighborhood in the past

of H+(Σ) and are locally strictly convex from the future.
Take x 6= y to be two points in τH+

−1[ε,+∞) which are spacelike-separated and close
enough so that r(x) and r(y) lie in a locally convex neighborhood on H+(Σ). Let α :
[0, 1]→ Sn1 be a spacelike segment joining x to y, with arclength parameter. Similarly, let
β be a (possibly null) segment joining r(x) to r(y). It follows from Lemma 6.1 that

(6.3) ε ≤
1

2
(τ(α(0), β(0)) + τ(α(1), β(1))) < τ(α(

1

2
), β(

1

2
));

therefore if β( 12) ∈ H+(Σ) we are done, otherwise continue the future pointing segment

from α(12) through β(12) to H
+(Σ) to complete the proof for Σ simply-connected.

Finally, when Σ is not simply-connected, we perform the construction above for Σ̃ and
note that each step is equivariant with respect to the covering transformations. ¤

Proposition 6.3. If Σ × (0,∞) is a hyperbolic or parabolic standard de Sitter spacetime,
then for every t ∈ (0,∞) the slice Σ× {t} is locally strictly convex.

Proof. It was noted in the proof of Proposition 6.2 that the slices in a parabolic standard
de Sitter spacetime are dual to horospheres in hyperbolic space and are therefore locally
strictly convex. Suppose therefore that Σ× (0,∞) is a hyperbolic standard de Sitter space-
time, and fix t ∈ (0,∞).

It was remarked above thatMmax(Σ×{t}) = Σ× (0,∞); The Cauchy horizon H+(Σ̃×
{t}) in Mmax(Σ̃ × {t}) is in one-to-one correspondence with the set of open round balls

U ⊂ Σ̃ such that U∞ 6= ∅. One sees that H+(Σ̃×{t}) satisfies the hypotheses of Proposition
6.2 in the following manner. Let U be an open round ball with p ∈ U∞; the failure of the
local convexity property translates into the existence of a nearby open round ball which
contains p, contradicting the fact that p ∈ U∞. The proposition is then a corollary of the
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previous proof, as the locally strictly convex surfaces constructed there are precisely the
hypersurfaces Σ̃× {t} of constant timelike separation t from H+(Σ̃× {t}). ¤

We shall see, in fact, that the proof given above of the locally convexity of of the Cauchy
horizon for a standard de Sitter spacetime works quite generally; this will allow us to obtain
the Classification Theorem 1.1 in the next section.

7. Proofs of Main Theorems

The first proposition is the key observation from which our main result is derived.

Proposition 7.1. Suppose M is a compact de Sitter spacetime, and Σ ⊂ M is a closed
acausal spacelike hypersurface. Suppose further that H+(Σ) is non-empty, and the null
generators of H+(Σ) are past complete. Then H+(Σ) is locally convex from the future,
with degenerate support planes corresponding to the null generators of H+(Σ).

Proof. Write dev : M̃ → Sn1 for the developing map. Take x ∈ H+(Σ); by Lemma 3.2
there exists an inextendible, past-pointing null generator β starting at x and lying entirely
within H+(Σ). Choose a lift x̃ ∈ M̃ of x, and let β̃ be the lift of β starting at x̃. There is

a unique degenerate hyperplane N ⊂ Sn1 containing dev(β̃); we claim N is a local support

plane for the developing image of a neighborhood of x̃ in H+(Σ̃) = H̃+(Σ). Suppose not,
so there exist points p ∈ I+(N) in the developing image of arbitrarily small neighborhoods

of x̃ in H+(Σ̃). But Proposition 3.4 implies that p ∈ I+(dev(β̃)); choosing p close enough
to dev(x̃), we assure the existence of a past-pointing timelike curve from p to a point of

dev(β̃) which lies entirely within the developing image of a small neighborhood of β̃. This
contradicts the fact that H+(Σ) is achronal, proving the proposition. ¤

We have modified the statement of Theorem 1.1, taking advantage of the formalism of
§3:

Theorem 7.2. If Σ is a spacelike de Sitter hypersurface, then Mmax(Σ) is a standard
de Sitter spacetime.

Proof. If Mmax(Σ) is both past and future complete, it follows that it is isometric to a
manifold of the form Sn1/Γ for some finite subgroup of Γ of SO0(n, 1). It is well-known
[30, 11.2] that all such subgroups are conjugate into the maximal compact subgroup SO(n)
of SO0(n, 1), and therefore Γ acts freely and isometrically on ∂+∞Sn+11 and ∂−∞Sn+11 . Thus
Mmax(Σ) is a standard de Sitter spacetime arising from the spherical space form so-defined.

Assume now, without loss of generality, that Mmax(Σ) fails to be future complete and

apply Proposition 3.3 to embed Mmax(Σ̃) in Mmax(Σ̃) so that H+(Σ̃) 6= ∅ and all null
generators are past complete. Combining Propositions 7.1 and 6.2 shows that there is
a global Cauchy hypersurface Σ′ for Mmax(Σ) which is locally strictly convex from the
future. Thus Mmax(Σ) ⊆ Mmax(Σ

′). Under this inclusion Σ becomes a global Cauchy
hypersurface for the spacetime Mmax(Σ

′) since any causal curve in Mmax(Σ
′) meets Σ′

and therefore Σ also; hence Mmax(Σ) =Mmax(Σ
′).

Because Σ′ is locally strictly convex and spacelike, we can define a corresponding flat
conformal structure on Σ′ by the Gauss map; i.e. following the unique timelike normal
line at each point of the developing image of Σ̃′ to past infinity defines an equivariant
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Figure 1. The lightly shaded region indicates the universal cover of an open
1+1 de Sitter annulus with hyperbolic holonomy which is not a domain
of dependence. The darker region is a fundamental domain for compact
annulus with spacelike boundary.

Figure 2. The lightly shaded region indicates the universal cover of an
open 1+1 de Sitter annulus with parabolic holonomy which is not a domain
of dependence. The darker region is a fundamental domain for compact
annulus with spacelike boundary and no closed timelike curves.

developing map D∞ : Σ̃′ → ∂−∞Sn+11 . The standard de Sitter spacetime corresponding to
this flat conformal structure contains Σ′ as a global Cauchy hypersurface, and so it equals
Mmax(Σ

′). Thus Mmax(Σ) is a standard de Sitter spacetime. ¤

8. Horizons in Standard de Sitter Spacetimes

Our main theorem classifies compact de Sitter domains of dependence by flat conformal
structures arising at timelike infinity. In [23], it is shown that every compact flat or anti-
de Sitter spacetime-bordism is a domain of dependence (in particular, a topological product
Σ × R with spacelike slices) by modifying the arguments of [4]. The analogous result is
not quite true in the de Sitter case, as there are simple counterexamples in dimension two.
It follows from Euler characteristic considerations that any two-dimensional spacetime-
bordism is homeomorphic to an annulus; nevertheless we have found a family of de Sitter
annuli which contain non-trivial Cauchy horizons.

Suppose τ ∈ SO0(2, 1) is a hyperbolic element, and fix a ruling of S21 by null lines. This
defines a pair of disjoint null lines in S21 joining the two fixed points of τ in ∂+∞S21 with the
ones in ∂−∞S21. The element τ acts freely and properly discontinuously on an open region
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U bounded by these two lines (compare figure 1, where for simplicity we have indicated
this situation in the universal cover of S21). The quotient U/〈τ〉 is a de Sitter annulus with
two non-trivial Cauchy horizons corresponding to the two null rays in U left invariant by
τ . One can construct similar examples which contain no closed timelike curves by choosing
τ to be parabolic. See figure 2.

In dimension three, similar examples arise when there are open subsets in the Cauchy
horizon which are foliated by null generators (arising from Hopf submanifolds in the flat
conformal structure at infinity) It is shown in [27] that these are the only possibilities.
There is presumably a similar result in higher dimensions, which will require a more careful
analysis of the group action on the space of maximal balls.
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