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LOCAL RIGIDITY OF HYPERBOLIC 3-MANIFOLDS
AFTER DEHN SURGERY

KEVIN P. SCANNELL

Abstract

It is well known that some lattices BO(n, 1) can be nontrivially deformed when in-
cluded inSO(n+1, 1) (e.g., via bending on a totally geodesic hypersurface); this con
trasts with the (super) rigidity of higher rank lattices. M. Kapovich recently gave the
first examples of lattices i8O(3, 1) which are locally rigid inSO(4, 1) by consider-
ing closed hyperboli@-manifolds obtained by Dehn filling on hyperbolic two-bridge
knots. We generalize this result to Dehn filling on a more general class of one-cusp
finite volume hyperboli@-manifolds, allowing us to produce the first examples of
closed hyperboli@-manifolds which contain embedded quasi-Fuchsian surfaces b
are locally rigid in SO(4, 1).

1. Introduction

This paper continues our study of the local deformation theory of rank-one lattice
which began with 28]. We are particularly interested in the local deformation space
of representations of an $8 1) lattice when viewed as a “Fuchsian” subgroup of
SO4, 1). The first examples of such deformations were given by B. Apanagov [
[4] around the same time that W. Thurston introduced his closely related notion
bending deformations of Fuchsian groups (s&& §8.7.3]). Examples in all dimen-
sions and detailed discussion can be foundlig] [see also22], [23]). Generaliza-
tions of bending have been considered by various authors (see3k.ip],[[29) and
typically involve either intersecting totally geodesic surfaces or a family of totally
geodesic surfaces with a common boundary geodesic.

Kapovich conjectured inl[6] that a closed hyperbolic 3-orbifold admits a non-
trivial deformation inO(4, 1) if and only if it contains an embedded quasi-Fuchsian
suborbifold. In P8 we gave examples of infinitesimal deformations for infinitely
many two-generator, closed hyperbolic 3-manifolds with zero first Betti number. Or
of these examples is non-Haken, and its fundamental group contains no nonelem
tary Fuchsian subgroups, providing an infinitesimal counterexample to one half
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Kapovich’s conjecture. One of the goals of this paper is to give counterexamples
the other half, by constructing infinitely many closed hyperbolic 3-manifolds that cor
tain quasi-Fuchsian surfaces but are locally rigid in(&Q). These manifolds also
serve as counterexamples to a second conjecture of KapaikH17], namely, that

for a closed 3-manifold, the deformation space of flat conformal structures shou
have only finitely many components. That this statement is false for hyperpolic
manifolds,n > 5, was known previously (se&()).

THEOREM5.2

There exist infinitely many closed hyperboiananifolds that contain embedded
guasi-Fuchsian surfaces and that are locally rigid3@X4, 1). The deformation space
of flat conformal structures for these manifolds contains an infinite set of isolate
points.

Our method for producing these examples rests on the following general rigidity th
orem.

THEOREM4.4

Let M ~ I'\H?® be a complete, orientable, hyperboBienanifold of finite volume with
one cusp. If PH(T, so(4, 1)) = 0, then there exist infinitely many closed hyperbolic
3-manifolds obtained by Dehn filling on M which are locally rigid$©(4, 1).

WhenM is the complement of a hyperbolic two-bridge knoSt this result was ob-
tained by Kapovich in18]. In this case, the vanishing of the parabolic cohomology
PHY(T, so(4, 1)) follows easily from the fact thaf is generated by two parabolic
elements (see3. In general, this cohomology group can be computed from an idec
triangulation ofM, and our calculations indicate that it vanishes quite often. We dis
cuss some of these computations in 85.

2. Preliminaries N

We first recall some of the notation frorg]. Let pg : 7 > I' € SOy(3, 1) be the
inclusion of a lattice in the identity component®@i3, 1), and consider the composi-
tion of pg with the inclusion SQ@(3, 1) — Sy(4, 1). We are interested in describing
a neighborhood gbg in the representation space HomSy(4, 1)). This space is a
real algebraic variety in a hatural way, and the Zariski tangent spagdsidentified
with the vector space of group cocyclgd(r, so(4, 1)). Here the coefficients lie in
the Lie algebra of Sg14, 1), made into & -module viapg and the adjoint action.
There is an action of S04, 1) on Hom(r, SOy(4, 1)) by conjugation; the subspace
Bl(w, s0(4, 1)) of coboundaries consists of the Zariski tangent vectors along orbit
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of this action. For this reason, we call a nonzero cohomology clads im, so(4, 1))
aninfinitesimal deformation gfg in SQy(4, 1). An infinitesimal deformation iste-
grableif it is tangent to a nontrivial curve in Hotr, SOy(4, 1)).

For anyZx-moduleV, we compute the group cohomolod(rr, V) in terms
of the standard resolution. Thus, a 1-cocycle is a functianr — V satisfying
c(gh) = c(g) + gc(h) for all g, h € =, and a 1-coboundary is a 1-cocycle of the
form c(g) = (1 — g)w for somew € V. When there is a possibility of confusion,
we make theZz-module structure explicit; for example, we writg, for a given
o1 — Aut(V).

WhenT is a nonuniform lattice, it contains parabolic elements, and we nee
a notion of cohomology classes that are trivial when restricted to cyclic parabol
subgroups. Let

PZXT, V) = {c e ZX(T, V)| for parabolicy € I, c(y) € im(1—y)},
and define thg@arabolic cohomology
PHYT, V) = PZYT, V)/BYT, V).

In [7] it is shown thatP HL(T", s0(3, 1)) = 0 for a nonuniform latticd™ ¢ SOy(3, 1),
giving the following analogue of the splitting lemma i2d].

LEMMA 2.1

Fix a representatiorpg : 7 — S(3,1) — Sy(4, 1). The Lie algebraso(4, 1)
splits as anSy(3, 1)-moduleso(4, 1) = s0(3, 1) @ RY, inducing a splitting in the
parabolic cohomology

PH(x, s0(4, 1)) = PHY(r,50(3, 1)) @ PH (%, RY).
Whenpg is an isomorphism onto a nonuniform lattice$y (3, 1), we have

PH (7, 50(4, 1)) = PHY(x, R)).
The next results are standard consequences of duality for surfaces and 3-manifolc

LEMMA 2.2 ([8])
Let be the fundamental group of a closed, orientable surface of genus g. Let G |
a semisimple Lie group, and fix a representatign = — G. Then

dimH(r, g) = (2g — 2)dimG + 2dimH %, g).
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Proof
The Killing form on g is nondegenerate and Ad-invariant, and therefore gives a
module isomorphism betwegrand its dualy*. By Poincaé duality, we see that

H2(r, g) = HO(r, g*)* = HO(x, g)*

and hence that
dim Hz(n, g) = dim HO(T[, 9.

The Euler characteristic in group cohomology is independent of the represemigtion
so by considering the trivial representation, we see that it is eqyal-+ta2g) dimG.
The lemma follows. O

Let M be a compact, oriented 3-manifold with a nonempty collection of boundar
component§Xj}, and letr = 71 M. We write H*(3, V) = @j H*(m1Xj, V) for
the group cohomology of the boundary components, and we ifriteH (7, V) —
H1(3, V) for the corresponding restriction map on first cohomology.

The next proposition is an easy consequence of Lefschetz duality for 3-manifol
and has appeared ii], §15], [L6], and [LZ]. A geometric argument for the case
G = SM,Y(8, 1) = PSL(2, C) can be found in30, §85.6] and f].

PROPOSITION2.3
Let M be a compact, oriente2manifold such thad M consists of a nonempty union
of tori. For any representatiopg : 7 — G of # = 71 M in a semisimple Lie group
G,

dimH(z, g) = dimkeri* + dimHO, g).

Proof (following [12])

For j = 0,1 we have the well-known identificatiortd ) (z, g) = H)(M; E) and

H1 (3, g) = HI(9M; E), whereE is the flat bundle associated to the representatior
po. Consider the following commutative diagram, suppressing the local coefficien
E:

HIM) — 5 HIGM) —2 H2(M, M)

| ! |
H2M, aM)* —2 5 HI@M)* —s  Hi(M)*

Here the vertical arrows are isomorphisms by duality, and the magusds, are the
duals ofi * ands*, respectively. We have

dimimé* = dimimi, = dimimi*,
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and so

dimHY(@M) = dim kers* + dimims*
= 2dimimi*.

Combining this with Lemma&.2, we obtain diminmi* = dim H%(@M) and thus

dimHY(M) = dimkeri* + dimimi*
= dimkeri* + dim H°(aM). O

3. Subgroups generated by parabolics

The results in this section are not required for the proof of our main result, but help
explain the significance of the parabolic cohomology hypothesis and its relationst
to the results of19].

PROPOSITION3.1
If A is a subgroup 08Qy(3, 1) generated by two parabolics, then P\, R‘l‘) =0.

Proof

Let g and o be the parabolic generators in &3, 1), and letc € PZ1(A,R}) <
PZY(A, so0(4, 1)), using the splitting of Lemma.1. Now c(ag) = (1 — ag)vg and
c(Bo) = (1 — Bp)wo for somewvg, wg € so(4, 1), and we can define two curves
of parabolicsay = exp(tvg)apexptvg)~t and gy = exp(two)Bo exptwo) L in
Sy(4, 1). But any pair of unipotents in S04, 1) leaves invariant a roungf in S8
(see [Lg)); hence the group generated dyandg; is conjugate back into S408, 1).
This implies thafc] € PHL(A, s0(3, 1)) and hence thdt] = 0. O

COROLLARY 3.2
If M ~ I'\HS is the complement of a hyperbolic two-bridge knot or lini§# then
PHYT, so(4, 1)) = 0.

Proof

It is well known that the fundamental group of a two-bridge knot or link is generatel
by two meridional loops, so in the hyperbolic caBFeis generated by two parabolic
elements. The corollary follows from Lemnial and the previous proposition. O

In fact, it is a remarkable consequence of the Smith conjecture that any finite volur
orientable, hyperbolic 3-manifold with fundamental group generated by two parabol
elements is the complement of a two-bridge linki(see [L]).
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COROLLARY 3.3

Let M ~ I'\H?® be a complete, orientable, hyperboBienanifold of finite volume with
at least one cusp, and let i: HY(T", so(4, 1)) — H1(d, s0(4, 1)) be the restriction
homomorphism as above. Then

PHY(T, s0(4, 1)) = keri*.

Proof

That keri * is included inP HL(T", so(4, 1)) is clear from the definitions. For the op-
posite inclusion, we may assume that the coefficients of a representative cocycl
lie in R by Lemma2.1. But PH(3,RY) = 0 by applying Propositioi3.1 to each
boundary component, $é[c] = O. O

4. Dehn surgery
We proceed with the proof of the rigidity theorem in this section. The basic stratec
is as follows: for a finite volume complete hyperbolic 3-manifold with one cusp, the
PSL(2, C) character varietyr is (real) 2-dimensional and smooth at the holonomy
representatiopg. For the larger variety of representations into(8), we may use
the results of 82, Lemma 4.1, and the parabolic cohomology hypothesis to show ti
the dimension of the Zariski tangent spacegis 3. The key technical point in the
proof is contained in Propositich3, which shows the existence of nonintegrable tan-
gent vectors in the tangent space@tFrom this result, we argue that the set of points
in R corresponding to potentially nonrigid surgered manifolds lies in a proper subv:
riety. But it is known that the set of points yielding closed hyperbolic manifolds is
Zariski-dense subset 6%, and the theorem follows. In the proof below, we actually
work with the full representation variety (before conjugation) to avoid the difficulties
involved in passing to the quotient variety.

The idea for the last part of the argument is taken from Kapovich’s proof for th
case of two-bridge knots (se&q]). We conjecture that the “infinitely many” in the
conclusion of the rigidity theorem can be replaced by “all but finitely many.”

LEMMA 4.1

Fix a representationog : Z & Z — SOy(3, 1) whose image is not generated by
commuting order-two elliptics. Thatim H%(Z & Z, s0(3, 1)) = 2. If, furthermore,
the image ofg is not contained in any one-parameter subgroup, we have

1 ata parabolic representation,

dmH°Z o Z,R}) = .
0 otherwise.

Proof
Having excluded the case of commuting order-two elliptics, it is well known tha
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two nontrivial elements of S§33, 1) commute if and only if their fixed point sets in
S? ~ 9HS coincide. Thus, if one element is parabolic, they all are, andHittZ &
Z,s0(3,1)) = 2. Alternatively, there is an invariant geodesic lineH#, and once
again we have dirl%(Z & Z, s0(3, 1)) = 2.

In the case of a parabolic representation, the common parabolic fixed point c
responds to a fixed null vector [@‘1‘. On the other hand, there are clearly no fixed
timelike vectors, and because the image is not contained in a one-parameter subgt
of parabolics, there is no invariafit? ¢ H2, hence no fixed spacelike vector. Thus,
dmH%Z & Z,R}) = 1.

Otherwise, our assumption implies thaj(Z @& 7Z) contains some loxodromic
elements (throughout, we ugexodromicto include purely hyperbolic elements). It
follows that there can be no fixed null or timelike vectorﬁ%ifland that any invariant
H? c H2 contains the common invariant geodesic. But this is only possible if eac
element is purely hyperbolic, which forces(Z & 7Z) to lie within a one-parameter
subgroup. We conclude that dif(Z & Z, RY) = 0 in this case. 0

LEMMA 4.2

Let o« and B8 be generators ofZ @ Z, and letp € Hom(Z & Z, SOy(4, 1)) be a
representation such thai(«) is loxodromic and—1 is not an eigenvalue g5(8).
Then the image gf is conjugate intdSy(3, 1).

Proof
View SOy(4, 1) as acting by Mbius transformations oR® U {oco} and conjugate so
that 0 and oo are, respectively, the repelling and attracting fixed pointg @f). It
follows thatp («) is of the form

X = A1 AX

for somer; > 1 andA € SQO(3). Sincep(B) commutes withp («), it leaves invariant
the fixed sef0, oo}. In fact, p(B) must fix 0 and oo, for if it interchanged them, it
would have an eigenvalue efl. Thus,p(8) is of the form

X — A2BX,

wherei, > 0 andB commutes withA in SO(3). Sincep(B) does not have-1 as
an eigenvalue, we can exclude the possibility tA&nd B are a pair of commuting
half-turns, and s and B share a common axis of rotation. We conclude hat)
andp(p) leave invariant a common planet? and therefore that is conjugate into
S;@GB, ). O

PROPOSITION4.3
Letpg: 1 — SO;(3, 1) — SMy(4, 1) be the inclusion of a torsion-free, nonuniform
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lattice. Then the representation varigtypm(r, SOy(4, 1)) is singular atpg. Indeed,
given anyw € Z1(x, R}) such that F[v] # 0 € H1(d, R}), there is a nonintegrable
cocycle in Z(xr, 50(3, 1)) @ (v).

Proof

First, note that the existence of a cocyelsatisfying the properties in the statement
of the proposition follows from Lemmaé.1 and Propositior?.3. Sincei*[v] # O,
we may fix one cusp endl such thati *[v] # 0 in Hl(z1 T, R}). Leta and g be
generators forr1 T.

A generic deformationw; € Hom(rr, SOy (3, 1)) of wg = po has the property
thatwt () is loxodromic for smalt > 0 (see P7]); fix one such deformation, and let
@ € Z(m, s0(3, 1)) be the tangent vector at= 0. Since the loxodromic elements
are open in S@(4, 1), there existg > 0 such that ifp; integratess + ev, thenpt (o)
is loxodromic for smalt > 0. Furthermore, sincgg(8) is unipotent,o(8) does not
have—1 as an eigenvalue for small valuestoThus, Lemmat.2implies thatp; |1
is conjugate into SEX3, 1) for smallt. We conclude that*(w + €v), and therefore
i*(v), are cohomologous to cocyclesi (1T, so(3, 1)), a contradiction. O

We are now ready to prove the main theorem.

THEOREM4.4

Let M ~ I'\H?® be a complete, orientable, hyperbaBenanifold of finite volume with
one cusp. If P H(T, so(4, 1)) = 0, then there exist infinitely many closed hyperbolic
3-manifolds obtained by Dehn filling on M which are locally rigid$©(4, 1).

Proof
By abuse of notation we also writd for the compact manifold with boundary whose
interior is homeomorphic to\H®. As usual, we letr = 1M, and we fix a holonomy
representatiomg : 3r C SM(3, 1) corresponding to the complete hyperbolic
structure onM. For brevity, we writeX, = Hom(z, SOy(n, 1)) for n = 3,4. We
begin with some properties &fs.

First, recall thatts is smooth afg (see [L1, 815], [19, §8.8]); its dimension can
be computed using Proposition 2.3:

dim Z* (7, 50(3, 1) 5,) = dimH* (7, 50(3, 1) 55) + dim BY(, 50(3, 1) )
= dimkeri* + dim H%(3, 50(3, 1) ,) + 6
=04+24+6=28,

where kei * vanishes byT], and we have used Lemma 4.1 for thep Z centralizer
in S;(3, 1). (Of course, since S§03, 1) = PSL(2, C), it is more common to realize



RIGIDITY AND DEHN SURGERY 9

X3 as a smooth 4-dimensional complex variety, but as we are in the context of .
inclusion into the noncomplex group §@, 1), it is convenient to work only with
the real algebraic structure.) A neighborhoodgfin X3 consists of representations
with Zariski dense image in 08B, 1); in particular, they all have trivial centralizer in
Sy(4, 1). It follows that the imagéls of the conjugation mas x SQy(4, 1) — X4
(i.e., the set of representations with image conjugate intg(®Q)) is smooth and
12-dimensional neasg.

On the other hand, the dimension of the Zariski tangent spa&g tan be com-
puted in a similar fashion:

dim Z1(, s0(4, 1) 5,) = dimH (77, 50(4, 1) 50) + dim BY(r, s0(4, 1) 5,)
= dimkeri* + dimH%(3, s0(4, 1),,,) + 10
=0+3+10=13

where we have used the parabolic cohomology hypothesis for the vanishing 6f ker
and Lemma 4.1 for th& @ Z centralizer in SQ(4, 1).

BecauseX, is singular atpp (see Propositiort.3), the dimension ofXs as a
real algebraic variety is strictly less than 13. Sidegis smooth and 12-dimensional,
we may conclude that the dimension®f is precisely 12. Thus, at a representation
p € X4 nearpg, we have dinZ1(x, so(4, D,) = 12+ ¢(p), wheree(p) = 0, 1.

A calculation like the one above shows that dith(r, so(4, 1,) =2+ ¢(p) and
therefore that dintH(z, (R}),) = ¢(p) for p € X3.

To dispose of the possibility that there is an open neighborhooggah afhere
e(p) = 1, we replacex, with the reduced variet®)4 defined by the ideal of poly-
nomials vanishing otX4. These two varieties coincide as point sets, but the Zarisk
tangent spaces @), are a priori smaller, and we are able to conclude that its singula
subvariety® has positive codimension (se&]).

We next writefR for the 2-dimensional character variety of representations ir
SMy(3, 1) up to conjugation. Fix a basis for the homology of the boundary toMs
and writex (p) = (p, q) for the generalized Dehn surgery invariant associated to
representatiop as in R7]. The set of conjugacy classes pfe R such thatc(p) is
a pair of relatively prime integers clustersatand is Zariski-dense (se&], [27]);
the same statement holdsfﬁg. Since®B has positive codimension, we conclude that
there are infinitely many closed hyperbolic 3-manifolds obtaineddyy) filling on
M such that the corresponding representatiaos not contained ifs.

Fix one such representatign ¢ B with k = k(p) = (p, q), and letM,, be
the closed manifold obtained kgp, q) filling on M. The representatiop factors
throughsr1 M, to give the holonomyp of the complete hyperbolic structure i,
so we haveZl(mi My, RD)7) € Z1(w, R)),). The imagep () = p(w1My) is a
lattice in SQ(3, 1) and therefore has trivial centralizer in §@, 1). This means that
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BL(r1M,, (RD)7) = BL(x, (R}),) = R}, and so
HY(mM,, RD7) € HY (7. RD),).

SinceH (1M, s0(4, 1)5) = H(m1 My, (RD)7) by the splitting lemma in7g], we
see by B1] thatp is locally rigid whenevee (p) = 0. On the other hand, if there exists
a nontrivial integrable deformation @f with tangent vectoo € H1(qM,, (R‘l‘)p),

it would also define a nontrivial curve ®)4 starting atp. We conclude from this
that the Zariski tangent spacely at p is at least 13-dimensional and therefore that
o € ‘B, a contradiction. O

5. Examples and remarks

The hypothesis of vanishing parabolic cohomology in the main theorem is close
related to the Menasco-Reid conjecture (s2g)[ which states that no hyperbolic
knot complement ir§ contains a closed, embedded, totally geodesic surface. C
course, the existence of such a surface implies the existence of a nontrivial class
PHY(T, so(4, 1)) by bending. The converse is false, however, as we have shown th
the family of Turk’s head links (starting with;8, see Rg]) all have nonvanishing
parabolic cohomology, while it is observed 2] that no closed 3-braid can contain
a closed embedded totally geodesic surface. The Fibonacci manifolds discusse
[28] are the two-fold branched covers of the Turk’s head links, and the respecti
cohomology calculations are closely related.

We should also remark that computer-assisted calculations are possible us
the Fox calculus and group representations computed from ideal triangulations w
SnapPea. As an example, among knot§3rwith fewer than eleven crossings, we
have found only three that have nontrivial parabolic cohomology. (Two of these a
the Turk’s head links § and 1Q23, and the third is 1} in the standard tables.) Thus,
vanishing results of this kind appear to be a promising approach to the Menasco-R
conjecture; in addition, they can be used to produce many interesting closed examj
in light of our main theorem.

Indeed, one of our main goals was to find counterexamples to the conjectures
Kapovich mentioned in the introduction. We may now do so by considering close
manifolds obtained by Dehn filling on certain hyperbolic knot§# For instance,
the 3-braidse, *e2e;, ere; '€ ande;, tere; 2ere; 262 close up to the knots 3@ and
1094, respectively, each of which is hyperbolic and satisfdd!(zr, s0(4, 1)) = 0
using SnapPea.

PROPOSITIONS.1
All but finitely many Dehn fillings ori0g1 and 10g4 yield closed hyperboliS-
manifolds that contain at least one closed, embedded, quasi-Fuchsian surface.
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Proof

Let K c S2be one of these knots, and Mt = S3\ K. First, Thurston’s Dehn surgery
theorem shows that all but finitely many Dehn fillingskrare hyperbolic. UsingZ4,
Cor. 3.7], M contains a closed, orientable, incompressible surfadhat remains
incompressible after any nontrivial Dehn filling. We claim that when the resulting
closed manifoldM’ is hyperbolic, the resulting incompressible surface c M’

is quasi-Fuchsian. If it were not, results of F. Bonahon and Thurston imply3that
would lift to a fiber in a fibration ove! in some finite cover oM’. But thenX' is
either itself a fiber in a fibration oM’ or separated!’ into two twisted! -bundles
over a nonorientable surface (s@€€]). The first possibility can be excluded because
¥ and ¥’ are separating. To exclude the second possibility, observ&tsaparates
S® into two connected componentdy (containing the knot) anM; (not containing
the knot). The manifoldM1 is not a twistedl -bundle over a nonorientable surface
sinceH2(M1, Z) = Ho(Mog, Z) = 0; thus, the same is true in any manifold obtained
by Dehn filling onK. O

THEOREMS5.2

There exist infinitely many closed hyperbolieananifolds that contain embedded
guasi-Fuchsian surfaces and that are locally rigid3@X4, 1). The deformation space
of flat conformal structures for these manifolds contains an infinite set of isolate
points.

Proof
By the previous proposition, infinitely many Dehn fillings orng10r 10y, are closed
hyperbolic manifolds containing quasi-Fuchsian surfaces, and these are locally ri
in SO(4, 1) by our main theorem.

For the second claim, we must use Thurston’s holonomy theorem {§Be [
which states that the holonomy map

hol : (M) — Hom(T', SO(4, 1))/ SO(4, 1)

from the deformation space of flat conformal structuresvbito the representation
variety is an open map and lifts to a local homeomorphism from the spaceélwitis!
developing maps to Hoglr, SO(4, 1)). Fix a flat conformal structure € (M)
with o = hol(o) Fuchsian (the inclusion of an $& 1) lattice). Sincep is a stable
representation (seé3, 81]), there exist neighborhootsof o andV of p, and open
setsU andV such thatU (resp.,V) is the quotient olJ (resp.,V) by the (finite)
isotropy ofo (resp.,p), and hol lifts to a homeomorphism frobthto V. In particular,

if p is isolated, it follows that is isolated as well. In our setup, hol is actually two-
to-one: the isotropy op in SO(4, 1) has order two, generated by the inclusion of
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—1 €SO3, 1) into SO4, 1), while the isotropy ot is trivial (using the main result
of [14] to see that is not fixed by the inclusion of-I).

In [9], W. Goldman gave a construction that allows one to performn=2
grafting” on a quasi-Fuchsian surface in a hyperbolic 3-manifold, yielding an infinit
family of distinct flat conformal structures with the same (Fuchsian) holonomy ref
resentation. When the Fuchsian representation is locally rigid i@.S(, as in the
examples constructed above, the flat conformal structures produced by Goldma
construction are isolated it (M). O
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