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LOCAL RIGIDITY OF HYPERBOLIC 3-MANIFOLDS
AFTER DEHN SURGERY

KEVIN P. SCANNELL

Abstract
It is well known that some lattices inSO(n, 1) can be nontrivially deformed when in-
cluded inSO(n+1, 1) (e.g., via bending on a totally geodesic hypersurface); this con-
trasts with the (super) rigidity of higher rank lattices. M. Kapovich recently gave the
first examples of lattices inSO(3, 1) which are locally rigid inSO(4, 1) by consider-
ing closed hyperbolic3-manifolds obtained by Dehn filling on hyperbolic two-bridge
knots. We generalize this result to Dehn filling on a more general class of one-cusped
finite volume hyperbolic3-manifolds, allowing us to produce the first examples of
closed hyperbolic3-manifolds which contain embedded quasi-Fuchsian surfaces but
are locally rigid inSO(4, 1).

1. Introduction
This paper continues our study of the local deformation theory of rank-one lattices,
which began with [28]. We are particularly interested in the local deformation space
of representations of an SO(3, 1) lattice when viewed as a “Fuchsian” subgroup of
SO(4, 1). The first examples of such deformations were given by B. Apanasov [2],
[4] around the same time that W. Thurston introduced his closely related notion of
bending deformations of Fuchsian groups (see [30, §8.7.3]). Examples in all dimen-
sions and detailed discussion can be found in [13] (see also [22], [23]). Generaliza-
tions of bending have been considered by various authors (see, e.g., [3], [5], [29]) and
typically involve either intersecting totally geodesic surfaces or a family of totally
geodesic surfaces with a common boundary geodesic.

Kapovich conjectured in [16] that a closed hyperbolic 3-orbifold admits a non-
trivial deformation inO(4, 1) if and only if it contains an embedded quasi-Fuchsian
suborbifold. In [28] we gave examples of infinitesimal deformations for infinitely
many two-generator, closed hyperbolic 3-manifolds with zero first Betti number. One
of these examples is non-Haken, and its fundamental group contains no nonelemen-
tary Fuchsian subgroups, providing an infinitesimal counterexample to one half of
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Kapovich’s conjecture. One of the goals of this paper is to give counterexamples to
the other half, by constructing infinitely many closed hyperbolic 3-manifolds that con-
tain quasi-Fuchsian surfaces but are locally rigid in SO(4, 1). These manifolds also
serve as counterexamples to a second conjecture of Kapovich [15], [17], namely, that
for a closed 3-manifold, the deformation space of flat conformal structures should
have only finitely many components. That this statement is false for hyperbolicn-
manifolds,n ≥ 5, was known previously (see [20]).

THEOREM 5.2
There exist infinitely many closed hyperbolic3-manifolds that contain embedded
quasi-Fuchsian surfaces and that are locally rigid inSO(4, 1). The deformation space
of flat conformal structures for these manifolds contains an infinite set of isolated
points.

Our method for producing these examples rests on the following general rigidity the-
orem.

THEOREM 4.4
Let M ≈ 0\H3 be a complete, orientable, hyperbolic3-manifold of finite volume with
one cusp. If P H1(0, so(4, 1)) = 0, then there exist infinitely many closed hyperbolic
3-manifolds obtained by Dehn filling on M which are locally rigid inSO(4, 1).

WhenM is the complement of a hyperbolic two-bridge knot inS3, this result was ob-
tained by Kapovich in [18]. In this case, the vanishing of the parabolic cohomology
P H1(0, so(4, 1)) follows easily from the fact that0 is generated by two parabolic
elements (see §3). In general, this cohomology group can be computed from an ideal
triangulation ofM , and our calculations indicate that it vanishes quite often. We dis-
cuss some of these computations in §5.

2. Preliminaries
We first recall some of the notation from [28]. Let ρ0 : π

∼=
→ 0 ⊂ SO0(3, 1) be the

inclusion of a lattice in the identity component ofO(3, 1), and consider the composi-
tion of ρ0 with the inclusion SO0(3, 1) ↪→ SO0(4, 1). We are interested in describing
a neighborhood ofρ0 in the representation space Hom(π, SO0(4, 1)). This space is a
real algebraic variety in a natural way, and the Zariski tangent space atρ0 is identified
with the vector space of group cocyclesZ1(π, so(4, 1)). Here the coefficients lie in
the Lie algebra of SO0(4, 1), made into aZπ -module viaρ0 and the adjoint action.
There is an action of SO0(4, 1) on Hom(π, SO0(4, 1)) by conjugation; the subspace
B1(π, so(4, 1)) of coboundaries consists of the Zariski tangent vectors along orbits
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of this action. For this reason, we call a nonzero cohomology class inH1(π, so(4, 1))

an infinitesimal deformation ofρ0 in SO0(4, 1). An infinitesimal deformation isinte-
grable if it is tangent to a nontrivial curve in Hom(π, SO0(4, 1)).

For anyZπ -moduleV , we compute the group cohomologyH1(π, V) in terms
of the standard resolution. Thus, a 1-cocycle is a functionc : π → V satisfying
c(gh) = c(g) + gc(h) for all g, h ∈ π , and a 1-coboundary is a 1-cocycle of the
form c(g) = (1 − g)w for somew ∈ V . When there is a possibility of confusion,
we make theZπ -module structure explicit; for example, we writeVρ for a given
ρ : π → Aut(V).

When 0 is a nonuniform lattice, it contains parabolic elements, and we need
a notion of cohomology classes that are trivial when restricted to cyclic parabolic
subgroups. Let

P Z1(0, V) =
{
c ∈ Z1(0, V)

∣∣ for parabolicγ ∈ 0, c(γ ) ∈ im(1 − γ )
}
,

and define theparabolic cohomology

P H1(0, V) = P Z1(0, V)/B1(0, V).

In [7] it is shown thatP H1(0, so(3, 1)) = 0 for a nonuniform lattice0 ⊂ SO0(3, 1),
giving the following analogue of the splitting lemma in [28].

LEMMA 2.1
Fix a representationρ0 : π → SO0(3, 1) ↪→ SO0(4, 1). The Lie algebraso(4, 1)

splits as anSO0(3, 1)-moduleso(4, 1) ∼= so(3, 1) ⊕ R4
1, inducing a splitting in the

parabolic cohomology

P H1(π, so(4, 1)
)

∼= P H1(π, so(3, 1)
)
⊕ P H1(π, R4

1).

Whenρ0 is an isomorphism onto a nonuniform lattice inSO0(3, 1), we have

P H1(π, so(4, 1)
)

∼= P H1(π, R4
1).

The next results are standard consequences of duality for surfaces and 3-manifolds.

LEMMA 2.2 ([8])
Let π be the fundamental group of a closed, orientable surface of genus g. Let G be
a semisimple Lie group, and fix a representationρ0 : π → G. Then

dim H1(π, g) = (2g − 2) dimG + 2 dimH0(π, g).
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Proof
The Killing form ong is nondegenerate and Ad-invariant, and therefore gives aG-
module isomorphism betweeng and its dualg∗. By Poincaŕe duality, we see that

H2(π, g) ∼= H0(π, g∗)∗ ∼= H0(π, g)∗

and hence that
dim H2(π, g) = dim H0(π, g).

The Euler characteristic in group cohomology is independent of the representationρ0,
so by considering the trivial representation, we see that it is equal to(2 − 2g) dimG.
The lemma follows.

Let M be a compact, oriented 3-manifold with a nonempty collection of boundary
components{6 j }, and letπ = π1M . We write H∗(∂, V) =

⊕
j H∗(π16 j , V) for

the group cohomology of the boundary components, and we writei ∗ : H1(π, V) →

H1(∂, V) for the corresponding restriction map on first cohomology.
The next proposition is an easy consequence of Lefschetz duality for 3-manifolds

and has appeared in [11, §15], [16], and [12]. A geometric argument for the case
G = SO0(3, 1) ∼= PSL(2, C) can be found in [30, §5.6] and [6].

PROPOSITION2.3
Let M be a compact, oriented3-manifold such that∂M consists of a nonempty union
of tori. For any representationρ0 : π → G of π = π1M in a semisimple Lie group
G,

dim H1(π, g) = dim keri ∗ + dim H0(∂, g).

Proof (following [12])
For j = 0, 1 we have the well-known identificationsH j (π, g) ∼= H j (M; E) and
H j (∂, g) ∼= H j (∂M; E), whereE is the flat bundle associated to the representation
ρ0. Consider the following commutative diagram, suppressing the local coefficients
E:

H1(M)
i ∗

−−−−→ H1(∂M)
δ∗

−−−−→ H2(M, ∂M)y y y
H2(M, ∂M)∗

δ∗
−−−−→ H1(∂M)∗

i∗
−−−−→ H1(M)∗

Here the vertical arrows are isomorphisms by duality, and the mapsi∗ andδ∗ are the
duals ofi ∗ andδ∗, respectively. We have

dim imδ∗
= dim im i∗ = dim im i ∗,
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and so

dim H1(∂M) = dim kerδ∗
+ dim imδ∗

= 2 dim imi ∗.

Combining this with Lemma2.2, we obtain dim imi ∗ = dim H0(∂M) and thus

dim H1(M) = dim keri ∗ + dim im i ∗

= dim keri ∗ + dim H0(∂M).

3. Subgroups generated by parabolics
The results in this section are not required for the proof of our main result, but help to
explain the significance of the parabolic cohomology hypothesis and its relationship
to the results of [18].

PROPOSITION3.1
If 1 is a subgroup ofSO0(3, 1) generated by two parabolics, then P H1(1, R4

1) = 0.

Proof
Let α0 andβ0 be the parabolic generators in SO0(3, 1), and letc ∈ P Z1(1, R4

1) ⊆

P Z1(1, so(4, 1)), using the splitting of Lemma2.1. Now c(α0) = (1 − α0)v0 and
c(β0) = (1 − β0)w0 for somev0, w0 ∈ so(4, 1), and we can define two curves
of parabolicsαt = exp(tv0)α0 exp(tv0)

−1 and βt = exp(tw0)β0 exp(tw0)
−1 in

SO0(4, 1). But any pair of unipotents in SO0(4, 1) leaves invariant a roundS2 in S3

(see [18]); hence the group generated byαt andβt is conjugate back into SO0(3, 1).
This implies that[c] ∈ P H1(1, so(3, 1)) and hence that[c] = 0.

COROLLARY 3.2
If M ≈ 0\H3 is the complement of a hyperbolic two-bridge knot or link inS3, then
P H1(0, so(4, 1)) = 0.

Proof
It is well known that the fundamental group of a two-bridge knot or link is generated
by two meridional loops, so in the hyperbolic case,0 is generated by two parabolic
elements. The corollary follows from Lemma2.1and the previous proposition.

In fact, it is a remarkable consequence of the Smith conjecture that any finite volume,
orientable, hyperbolic 3-manifold with fundamental group generated by two parabolic
elements is the complement of a two-bridge link inS3 (see [1]).
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COROLLARY 3.3
Let M ≈ 0\H3 be a complete, orientable, hyperbolic3-manifold of finite volume with
at least one cusp, and let i∗

: H1(0, so(4, 1)) → H1(∂, so(4, 1)) be the restriction
homomorphism as above. Then

P H1(0, so(4, 1)
)

= keri ∗.

Proof
That keri ∗ is included inP H1(0, so(4, 1)) is clear from the definitions. For the op-
posite inclusion, we may assume that the coefficients of a representative cocyclec
lie in R4

1 by Lemma2.1. But P H1(∂, R4
1) = 0 by applying Proposition3.1 to each

boundary component, soi ∗[c] = 0.

4. Dehn surgery
We proceed with the proof of the rigidity theorem in this section. The basic strategy
is as follows: for a finite volume complete hyperbolic 3-manifold with one cusp, the
PSL(2, C) character varietyR is (real) 2-dimensional and smooth at the holonomy
representationρ0. For the larger variety of representations into SO(4, 1), we may use
the results of §2, Lemma 4.1, and the parabolic cohomology hypothesis to show that
the dimension of the Zariski tangent space atρ0 is 3. The key technical point in the
proof is contained in Proposition4.3, which shows the existence of nonintegrable tan-
gent vectors in the tangent space atρ0. From this result, we argue that the set of points
in R corresponding to potentially nonrigid surgered manifolds lies in a proper subva-
riety. But it is known that the set of points yielding closed hyperbolic manifolds is a
Zariski-dense subset ofR, and the theorem follows. In the proof below, we actually
work with the full representation variety (before conjugation) to avoid the difficulties
involved in passing to the quotient variety.

The idea for the last part of the argument is taken from Kapovich’s proof for the
case of two-bridge knots (see [18]). We conjecture that the “infinitely many” in the
conclusion of the rigidity theorem can be replaced by “all but finitely many.”

LEMMA 4.1
Fix a representationρ0 : Z ⊕ Z → SO0(3, 1) whose image is not generated by
commuting order-two elliptics. Thendim H0(Z ⊕ Z, so(3, 1)) = 2. If, furthermore,
the image ofρ0 is not contained in any one-parameter subgroup, we have

dim H0(Z ⊕ Z, R4
1) =

{
1 at a parabolic representation,

0 otherwise.

Proof
Having excluded the case of commuting order-two elliptics, it is well known that
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two nontrivial elements of SO0(3, 1) commute if and only if their fixed point sets in
S2

≈ ∂H3 coincide. Thus, if one element is parabolic, they all are, and dimH0(Z ⊕

Z, so(3, 1)) = 2. Alternatively, there is an invariant geodesic line inH3, and once
again we have dimH0(Z ⊕ Z, so(3, 1)) = 2.

In the case of a parabolic representation, the common parabolic fixed point cor-
responds to a fixed null vector inR4

1. On the other hand, there are clearly no fixed
timelike vectors, and because the image is not contained in a one-parameter subgroup
of parabolics, there is no invariantH2

⊂ H3, hence no fixed spacelike vector. Thus,
dim H0(Z ⊕ Z, R4

1) = 1.
Otherwise, our assumption implies thatρ0(Z ⊕ Z) contains some loxodromic

elements (throughout, we useloxodromicto include purely hyperbolic elements). It
follows that there can be no fixed null or timelike vectors inR4

1 and that any invariant
H2

⊂ H3 contains the common invariant geodesic. But this is only possible if each
element is purely hyperbolic, which forcesρ0(Z ⊕ Z) to lie within a one-parameter
subgroup. We conclude that dimH0(Z ⊕ Z, R4

1) = 0 in this case.

LEMMA 4.2
Let α and β be generators ofZ ⊕ Z, and letρ ∈ Hom(Z ⊕ Z, SO0(4, 1)) be a
representation such thatρ(α) is loxodromic and−1 is not an eigenvalue ofρ(β).
Then the image ofρ is conjugate intoSO0(3, 1).

Proof
View SO0(4, 1) as acting by M̈obius transformations onR3

∪ {∞} and conjugate so
that 0 and∞ are, respectively, the repelling and attracting fixed points ofρ(α). It
follows thatρ(α) is of the form

x 7→ λ1Ax

for someλ1 > 1 andA ∈ SO(3). Sinceρ(β) commutes withρ(α), it leaves invariant
the fixed set{0, ∞}. In fact, ρ(β) must fix 0 and∞, for if it interchanged them, it
would have an eigenvalue of−1. Thus,ρ(β) is of the form

x 7→ λ2Bx,

whereλ2 > 0 andB commutes withA in SO(3). Sinceρ(β) does not have−1 as
an eigenvalue, we can exclude the possibility thatA and B are a pair of commuting
half-turns, and soA andB share a common axis of rotation. We conclude thatρ(α)

andρ(β) leave invariant a common plane inR3 and therefore thatρ is conjugate into
SO0(3, 1).

PROPOSITION4.3
Letρ0 : π → SO0(3, 1) ↪→ SO0(4, 1) be the inclusion of a torsion-free, nonuniform
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lattice. Then the representation varietyHom(π, SO0(4, 1)) is singular atρ0. Indeed,
given anyv ∈ Z1(π, R4

1) such that i∗[v] 6= 0 ∈ H1(∂, R4
1), there is a nonintegrable

cocycle in Z1(π, so(3, 1)) ⊕ 〈v〉.

Proof
First, note that the existence of a cocyclev satisfying the properties in the statement
of the proposition follows from Lemma4.1 and Proposition2.3. Sincei ∗[v] 6= 0,
we may fix one cusp endT such thati ∗[v] 6= 0 in H1(π1T, R4

1). Let α andβ be
generators forπ1T .

A generic deformationωt ∈ Hom(π, SO0(3, 1)) of ω0 = ρ0 has the property
thatωt (α) is loxodromic for smallt > 0 (see [27]); fix one such deformation, and let
ω̇ ∈ Z1(π, so(3, 1)) be the tangent vector att = 0. Since the loxodromic elements
are open in SO0(4, 1), there existsε > 0 such that ifρt integratesω̇ + εv, thenρt (α)

is loxodromic for smallt > 0. Furthermore, sinceρ0(β) is unipotent,ρt (β) does not
have−1 as an eigenvalue for small values oft . Thus, Lemma4.2implies thatρt |π1T

is conjugate into SO0(3, 1) for small t . We conclude thati ∗(ω̇ + εv), and therefore
i ∗(v), are cohomologous to cocycles inZ1(π1T, so(3, 1)), a contradiction.

We are now ready to prove the main theorem.

THEOREM 4.4
Let M ≈ 0\H3 be a complete, orientable, hyperbolic3-manifold of finite volume with
one cusp. If P H1(0, so(4, 1)) = 0, then there exist infinitely many closed hyperbolic
3-manifolds obtained by Dehn filling on M which are locally rigid inSO(4, 1).

Proof
By abuse of notation we also writeM for the compact manifold with boundary whose
interior is homeomorphic to0\H3. As usual, we letπ = π1M , and we fix a holonomy

representationρ0 : π
∼=
→ 0 ⊂ SO0(3, 1) corresponding to the complete hyperbolic

structure onM . For brevity, we writeXn = Hom(π, SO0(n, 1)) for n = 3, 4. We
begin with some properties ofX3.

First, recall thatX3 is smooth atρ0 (see [11, §15], [19, §8.8]); its dimension can
be computed using Proposition 2.3:

dim Z1(π, so(3, 1)ρ0

)
= dim H1(π, so(3, 1)ρ0

)
+ dim B1(π, so(3, 1)ρ0

)
= dim keri ∗ + dim H0(∂, so(3, 1)ρ0

)
+ 6

= 0 + 2 + 6 = 8,

where keri ∗ vanishes by [7], and we have used Lemma 4.1 for theZ ⊕ Z centralizer
in SO0(3, 1). (Of course, since SO0(3, 1) ∼= PSL(2, C), it is more common to realize
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X3 as a smooth 4-dimensional complex variety, but as we are in the context of an
inclusion into the noncomplex group SO0(4, 1), it is convenient to work only with
the real algebraic structure.) A neighborhood ofρ0 in X3 consists of representations
with Zariski dense image in SO0(3, 1); in particular, they all have trivial centralizer in
SO0(4, 1). It follows that the imagẽX3 of the conjugation mapX3×SO0(4, 1) → X4

(i.e., the set of representations with image conjugate into SO0(3, 1)) is smooth and
12-dimensional nearρ0.

On the other hand, the dimension of the Zariski tangent space toX4 can be com-
puted in a similar fashion:

dim Z1(π, so(4, 1)ρ0

)
= dim H1(π, so(4, 1)ρ0

)
+ dim B1(π, so(4, 1)ρ0

)
= dim keri ∗ + dim H0(∂, so(4, 1)ρ0

)
+ 10

= 0 + 3 + 10 = 13,

where we have used the parabolic cohomology hypothesis for the vanishing of keri ∗

and Lemma 4.1 for theZ ⊕ Z centralizer in SO0(4, 1).
BecauseX4 is singular atρ0 (see Proposition4.3), the dimension ofX4 as a

real algebraic variety is strictly less than 13. SinceX̃3 is smooth and 12-dimensional,
we may conclude that the dimension ofX4 is precisely 12. Thus, at a representation
ρ ∈ X4 nearρ0, we have dimZ1(π, so(4, 1)ρ) = 12 + ε(ρ), whereε(ρ) = 0, 1.
A calculation like the one above shows that dimH1(π, so(4, 1)ρ) = 2 + ε(ρ) and
therefore that dimH1(π, (R4

1)ρ) = ε(ρ) for ρ ∈ X3.
To dispose of the possibility that there is an open neighborhood ofρ0 where

ε(ρ) = 1, we replaceX4 with the reduced varietyY4 defined by the ideal of poly-
nomials vanishing onX4. These two varieties coincide as point sets, but the Zariski
tangent spaces ofY4 are a priori smaller, and we are able to conclude that its singular
subvarietyB has positive codimension (see [32]).

We next writeR for the 2-dimensional character variety of representations in
SO0(3, 1) up to conjugation. Fix a basis for the homology of the boundary torus∂M ,
and writeκ(ρ) = (p, q) for the generalized Dehn surgery invariant associated to a
representationρ as in [27]. The set of conjugacy classes ofρ ∈ R such thatκ(ρ) is
a pair of relatively prime integers clusters atρ0 and is Zariski-dense (see [18], [27]);
the same statement holds iñX3. SinceB has positive codimension, we conclude that
there are infinitely many closed hyperbolic 3-manifolds obtained by(p, q) filling on
M such that the corresponding representationρ is not contained inB.

Fix one such representationρ /∈ B with κ = κ(ρ) = (p, q), and letMκ be
the closed manifold obtained by(p, q) filling on M . The representationρ factors
throughπ1Mκ to give the holonomyρ of the complete hyperbolic structure onMκ ,
so we haveZ1(π1Mκ , (R4

1)ρ) ⊆ Z1(π, (R4
1)ρ). The imageρ(π) = ρ(π1Mκ ) is a

lattice in SO0(3, 1) and therefore has trivial centralizer in SO0(4, 1). This means that
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B1(π1Mκ , (R4
1)ρ) = B1(π, (R4

1)ρ) ∼= R4
1, and so

H1(π1Mκ , (R4
1)ρ

)
⊆ H1(π, (R4

1)ρ
)
.

SinceH1(π1Mκ , so(4, 1)ρ) = H1(π1Mκ , (R4
1)ρ) by the splitting lemma in [28], we

see by [31] thatρ is locally rigid wheneverε(ρ) = 0. On the other hand, if there exists
a nontrivial integrable deformation ofρ with tangent vectorv ∈ H1(π1Mκ , (R4

1)ρ),
it would also define a nontrivial curve inY4 starting atρ. We conclude from this
that the Zariski tangent space toY4 atρ is at least 13-dimensional and therefore that
ρ ∈ B, a contradiction.

5. Examples and remarks
The hypothesis of vanishing parabolic cohomology in the main theorem is closely
related to the Menasco-Reid conjecture (see [25]), which states that no hyperbolic
knot complement inS3 contains a closed, embedded, totally geodesic surface. Of
course, the existence of such a surface implies the existence of a nontrivial class in
P H1(0, so(4, 1)) by bending. The converse is false, however, as we have shown that
the family of Turk’s head links (starting with 818; see [28]) all have nonvanishing
parabolic cohomology, while it is observed in [25] that no closed 3-braid can contain
a closed embedded totally geodesic surface. The Fibonacci manifolds discussed in
[28] are the two-fold branched covers of the Turk’s head links, and the respective
cohomology calculations are closely related.

We should also remark that computer-assisted calculations are possible using
the Fox calculus and group representations computed from ideal triangulations with
SnapPea. As an example, among knots inS3 with fewer than eleven crossings, we
have found only three that have nontrivial parabolic cohomology. (Two of these are
the Turk’s head links 818 and 10123, and the third is 1099 in the standard tables.) Thus,
vanishing results of this kind appear to be a promising approach to the Menasco-Reid
conjecture; in addition, they can be used to produce many interesting closed examples
in light of our main theorem.

Indeed, one of our main goals was to find counterexamples to the conjectures of
Kapovich mentioned in the introduction. We may now do so by considering closed
manifolds obtained by Dehn filling on certain hyperbolic knots inS3. For instance,
the 3-braidse−1

2 e2
1e−3

2 e1e−1
2 e2

1 ande−1
2 e1e−3

2 e1e−2
2 e2

1 close up to the knots 1091 and
1094, respectively, each of which is hyperbolic and satisfiesP H1(π, so(4, 1)) = 0
using SnapPea.

PROPOSITION5.1
All but finitely many Dehn fillings on1091 and 1094 yield closed hyperbolic3-
manifolds that contain at least one closed, embedded, quasi-Fuchsian surface.
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Proof
Let K ⊂ S3 be one of these knots, and letM = S3

\K . First, Thurston’s Dehn surgery
theorem shows that all but finitely many Dehn fillings onK are hyperbolic. Using [24,
Cor. 3.7], M contains a closed, orientable, incompressible surface6 that remains
incompressible after any nontrivial Dehn filling. We claim that when the resulting
closed manifoldM ′ is hyperbolic, the resulting incompressible surface6′

⊂ M ′

is quasi-Fuchsian. If it were not, results of F. Bonahon and Thurston imply that6′

would lift to a fiber in a fibration overS1 in some finite cover ofM ′. But then6′ is
either itself a fiber in a fibration ofM ′ or separatesM ′ into two twistedI -bundles
over a nonorientable surface (see [26]). The first possibility can be excluded because
6 and6′ are separating. To exclude the second possibility, observe that6 separates
S3 into two connected components,M0 (containing the knot) andM1 (not containing
the knot). The manifoldM1 is not a twistedI -bundle over a nonorientable surface
sinceH2(M1, Z) ∼= H̃0(M0, Z) = 0; thus, the same is true in any manifold obtained
by Dehn filling onK .

THEOREM 5.2
There exist infinitely many closed hyperbolic3-manifolds that contain embedded
quasi-Fuchsian surfaces and that are locally rigid inSO(4, 1). The deformation space
of flat conformal structures for these manifolds contains an infinite set of isolated
points.

Proof
By the previous proposition, infinitely many Dehn fillings on 1091 or 1094 are closed
hyperbolic manifolds containing quasi-Fuchsian surfaces, and these are locally rigid
in SO(4, 1) by our main theorem.

For the second claim, we must use Thurston’s holonomy theorem (see [10]),
which states that the holonomy map

hol : S (M) → Hom
(
0, SO(4, 1)

)
/ SO(4, 1)

from the deformation space of flat conformal structures onM to the representation
variety is an open map and lifts to a local homeomorphism from the space of Möbius
developing maps to Hom(0, SO(4, 1)). Fix a flat conformal structureσ ∈ S (M)

with ρ = hol(σ ) Fuchsian (the inclusion of an SO(3, 1) lattice). Sinceρ is a stable
representation (see [13, §1]), there exist neighborhoodsU of σ andV of ρ, and open
setsŨ and Ṽ such thatU (resp.,V) is the quotient ofŨ (resp.,Ṽ) by the (finite)
isotropy ofσ (resp.,ρ), and hol lifts to a homeomorphism from̃U to Ṽ . In particular,
if ρ is isolated, it follows thatσ is isolated as well. In our setup, hol is actually two-
to-one: the isotropy ofρ in SO(4, 1) has order two, generated by the inclusion of
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−I ∈ SO(3, 1) into SO(4, 1), while the isotropy ofσ is trivial (using the main result
of [14] to see thatσ is not fixed by the inclusion of−I ).

In [9], W. Goldman gave a construction that allows one to perform “2πn-
grafting” on a quasi-Fuchsian surface in a hyperbolic 3-manifold, yielding an infinite
family of distinct flat conformal structures with the same (Fuchsian) holonomy rep-
resentation. When the Fuchsian representation is locally rigid in SO(4, 1), as in the
examples constructed above, the flat conformal structures produced by Goldman’s
construction are isolated inS (M).
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