
Global Software

Kevin Scannell

April 8, 2002



Internationalization: the process of design-

ing and producing software which can be easily

adapted for use by anyone in the world.

Localization: the process of performing the

above adaptation to an internationalized piece

of software (taking into account language, cul-

tural conventions, etc., as we’ll discuss)

Internationalization is often abbreviated “I18N”.

Perfect internationalization allows localization

without changing the “programming” at all

(indeed without even recompiling). Cultural

or language-specific material is stored in ap-

propriate data files which the internationalized

software uses to “deduce” the local situation

– more on this later.

The ideal is one shrink-wrapped package which

will run correctly anywhere in the world.

My primary reference: Tuthill and Smallberg,

Creating Worldwide Software, 2nd ed., 1997.



Language survey.

The 148 languages surveyed are the living lan-

guages among those having two-letter iden-

tifiers under the ISO-639-1 standard. These

identifiers are used in many ways to “flag” soft-

ware or web content as being in a particular

language. It’s hard to be a computer user in a

minority language and not know your code!

Naturally the standard includes the most widely

spoken languages. But (by my rough calcula-

tions) only about 5,012,168,000 of the world’s

6,235,000,000 people (80.4%) are native speak-

ers of one of these languages. Indeed lots

of biggies are left out: Awadhi (20,540,000),

Bhojpuri (25,000,000), Maithili (24,260,000)

in India, plus Hausa (24,200,000) and Yoruba

(20,000,000) in Nigeria.



There are some 6800 languages in the world,

so the 148 surveyed make up a measly 2.2%.

Indeed, as it is easy merely to place a language

on a list and assign it a code, it comes as no

surprise that many of the 148 have no useful

software available at all. Only 31 have a com-

plete “modern” operating system available ac-

cording to my unscientific survey of Windows,

SUN Solaris, Mac OS, and some varieties of

Linux (the grassroots nature of the latter helps

the total quite a bit).

Only half of the world’s population speak one

of these 31 languages, leaving more than 3

billion people without access.



Why internationalize?

1. The usual reason given in books on this
subject is a market-based one which I’d like
to transcend here.

2. “Universal access” is the primary mission
of the WWW consortium: “One of W3C’s
primary goals is to make these [opportu-
nities to share knowledge] available to all
people . . . ” See:
http://www.w3.org/Consortium/Points/

3. The plight of the world’s minority languages.
Of the 6800 languages in the world, half
are “moribund” (not being passed on to
children) and up to 90% are expected to
become extinct in the coming century. A
major problem is the unavailability of ser-
vices (including software) in smaller lan-
guages which leads to encroachment of global
languages (mainly English).

http://www.w3.org/Consortium/Points/


Why should I care about minority languages?

1. Fundamental human right to communicate

in the language of one’s choosing; see

http://www.linguistic-declaration.org/

“Universal Declaration of Linguistic Rights”

2. Intellectual and cultural evolution depends

on diversity. “McWorld” . . . “pop mono-

culture that reduces everything to the level

of the most stupendous boredom” – Irish

language poet Nuala Ńı Dhomhnaill in the

NY Times Book Review, 1994.

3. Repositories of linguistic diversity coincide

very well with the remaining repositories

of biological diversity (the Amazon basin,

Africa, New Guinea, etc.) Activities which

support indigenous peoples reinforce the

preservation of both kinds of diversity; see

http://www.terralingua.org/

http://www.linguistic-declaration.org/
http://www.terralingua.org/


4. Loss of knowledge – each language is a

unique and unrepeatable storehouse of hu-

man knowledge: historical, artistic, medi-

cal, ecological, etc.

5. Loss to science (linguistics). We under-

stand the way language works by looking

at examples. Only a small fraction of the

world’s languages have been documented

to an acceptable extent. If a language be-

comes extinct without having been recorded,

it is lost forever.



Basic internationalization of messages: natu-

rally all text output that the user sees must

be available in the desired language (plus any

paper documentation or packaging). If this

were the only issue, internationalization would

be easy:

main()

{
printf("Hello, world!\n");
}

becomes:

main()

{
/* read two-letter locale from environment */

setlocale(LC MESSAGES,"");

/* specify message database for this program */

textdomain("helloworld");

/* use gettext to read the message and print */

printf(gettext("Hello, world!\n"));
}



So what’s the problem? Well, one major issue

is that you have no control over the size of

the translated strings. So when you organize

your menus and windows and things, you can’t

assume that the label “File” will need just four

characters in a local version.

Even worse, not all languages use the “Latin”

alphabet! There are different alphabets for

Russian (Cyrillic), Greek, Armenian, Georgian,

Arabic, Hebrew, Chinese, Japanese, and for

virtually every different major language spo-

ken in India (Hindi, Bengali, Telugu, Tamil,

Gujarati are all different) and so on. As with

Latin, a certain amount of overlap occurs: Uk-

rainian, Bulgarian, etc. use Cyrillic, Urdu, Per-

sian, Pashto, etc. use Arabic.

The terminology in computer science is a char-

acter set – a mapping between internal rep-

resentations (in terms of bits) and abstract

“characters” (letters, numbers, punctuation,

etc.) Different than a font which maps char-

acters to graphical depictions.



From the early days of computing through the

1980’s there was only one widely used charac-

ter set in the West, called ASCII: the American

Standard Code for Information Interchange. It

was given its current form in 1968.

It represents 128 different characters: the 52

uppercase and lowercase Latin letters, 10 dig-

its, 32 mathematical symbols and punctuation

marks, and 34 other unprintable “control char-

acters”. Each is represented with 7 bits (on-off

switches): 0000000, 0000001, . . . , 1111110,

1111111. This is reasonably satisfactory for

English, but basically for NO other languages,

even those using a Latin alphabet, because of

the need for accented characters!

Now one byte is by definition eight bits, not

seven. This is the basic unit of data in mod-

ern computers. This fact was exploited to ex-

tend the ASCII definition in various ways, tak-

ing into account the extra bit, and allowing

256 total characters. These different 8-bit ex-

tensions of ASCII form the ISO 8859 standard:



ISO 8859-1 (“Latin-1”): adds the accents needed

for representing most Western European lan-

guages (á, à, å, â, ã, ä, æ, ø, ß, ñ, . . . )

-2: Eastern European Latin: Croatian, Czech,

Hungarian, Polish, Romanian, Slovak, Slove-

nian (characters like ź, č, ă, ű, . . . )

-3: Maltese

-4: Estonian, Latvian, Lithuanian (ķ, ā, ė, . . . )

Four non-Latin alphabets:

-5: Cyrillic, -6: Arabic, -7: Greek, -8: Hebrew

-9: Turkish (replaces rare Icelandic characters

from Latin-1 with ş, ı, and ğ)



The approach taken by ISO 8859 won’t work

for the ideographic alphabets of East Asia, which,

in their unabridged forms, can have tens of

thousands of different displayable characters.

Obviously eight bits are not enough to map

all of these. The most widely-used schemes

currently employ a mixture of 8-bit and 16-bit

characters, with escape sequences to switch

between them (like TEX in a way).

The current goal is for all computers to use

a single massive 16-bit character set (which

means 65,536 different characters, fixed-length

of two bytes each) representing all characters

in all human writing systems. This project is

called UNICODE.

One problem is that the data doesn’t include

any information about which language is be-

ing encoded, which affects things like sorting

since the same character may sort differently

in different languages (“ö” sorts with “o” in

German but last in Swedish).



The real worry is that even 65,536 is not enough

room! Indeed a high end estimate for Japanese

alone may be near 60,000 characters. A cer-

tain amount of “squishing” of similar ideographs

necessarily occurs. This has led to recrimina-

tions of “cultural imperialism” in East Asia and

some fierce opposition to UNICODE.

As a fix, UNICODE has come up with a scheme

which reserves a small collection (2048) of char-

acter codes as “surrogate pairs”; if you read a

character in the first 1024 of these, then it is

combined with the next character into a 32-bit

character; giving a grand total of:

65536-2048 + 1024*1024 = 1,112,064

possible characters. Critics say this is no better

than old variable-length schemes and wastes

space with 32-bit representations, but if you

use the surrogate pairs only for the rarest char-

acters, this seems to be a viable solution.



Other language-specific difficulties:

(1) In some languages the way a character dis-

plays is context-sensitive. Arabic is like this. A

simple example is the Greek σ, which, at the

end of a word, looks like ς.

(2) Writing direction. Hebrew and Arabic are

displayed right to left.

(3) Some languages (e.g. Thai) have no word

delimiters (like spaces in Western languages).

Makes writing an internationalized search func-

tion nearly impossible.

(4) Hyphenation rules vary by language. TEX

has a scheme for specifying these rules in a

kind of database as part of localization, but

doesn’t take into account unpleasantness like

German: necken divides into nek- and -ken.



(5) Sorting. Issue noted above, but it gets

worse. Can’t count on sorting a character at

a time (again, German “ß” is one of the cul-

prits). Perhaps for this reason, Spanish re-

cently changed from its historical system (where,

e.g. “ch” collates after “c”) to the English

system. The C function strcoll is a version of

strcmp which reads the locale and sorts appro-

priately.

(6) Dynamical messaging: inflections: “the

file(s) you requested”; vocative: “You have

one gold piece, Sean” vs. “A Sheáin, tá ṕiosa

óir ámhain agat”; word order:



A mish-mash of other issues:

(1) Translating single-letter mnemonics.

(2) Time and date formatting, calendars.

(3) Formatting numbers and currencies.

(4) “First” and “Last” names.

(5) Bad Images: bitmaps including text, Apple

trash can, light bulb, mailbox, hand gestures,

road signs.

(6) Color choices:


