Initial mutations as low-entropy features in neural language modeling

Kevin Scannell
Ollscoil Saint Louis / Acadamh na hOllscolaíochta Gaeilge 6 Feabhra 2020

"Praistriúchán"

Irish portmanteau word:
"praiseach" = "a mess, a botch job", "aistriúchán" = "translation"

intergaelic.com

FOCLÓIR AISTRIÚCHÁN
ghlèidh an bùth na cèicean a bh'aca
ghlèidh an bùth na cèicean a bh'aca
choinnigh an siopa na gcácaí a bhí acu

Language modeling

- A language model (LM) is a probability distribution over sequences of words
- If $S=$ "colorless green ideas...", a language model assigns this a prob $P(S)$:
- $P(S)=P\left(\right.$ colorless $\left.{ }^{\wedge}\right) P($ greenlcolorless) $P($ ideas colorless green) ...
- Usually formulated and computed this way (word prob given history)
- LMs capture a lot! Pragmatics, syntax, real-world knowledge, ...
- $P($ CarolinalWe spent spring break in South $)>$

P(DakotalWe spent spring break in South)

- $\quad P$ (is IThe dog that chased the cat that chased the mice) $>$

P (arelThe dog that chased the cat that chased the mice)

Applications

- Almost all important language technologies use LMs at some level!
- Can be used generatively
- MT, ASR, etc. fundamentally generate text, conditioned on input
- Conversational agents (Turing test)
- Strong LM alone can do question answering, summarization, ...
- Better language models give better end-to-end performance, generally

Neural language models

- A flood of recent papers on neural language modeling, big leaps forward
- Originally, feed-forward neural networks (Bengio et al, 2003)
- Various refinements + regularization of recurrent networks (LSTMs, etc.)
- Most recently the Transformer architecture (Vaswani et al, 2017)
- My current research involves applying these developments to Irish
- Want to discuss one small linguistically interesting piece of this today...

Research on English != Research on Language

- Sites tracking SOTA for language modeling show English datasets only
- Research almost 100\% (and implicitly!) focused on English
- The word "English" isn't used even once in these groundbreaking papers:
- Google Brain's landmark 2016 paper "Exploring the limits of language modeling"
- Melis et al's "On the state of the art of evaluation in neural language models" (2017)
- Dai et al's "Transformer-XL" paper (2019)
- New SOTA "Megatron-LM" paper (2019)
- New architectures are likely to only benefit languages with massive corpora
- Also are unlikely to work well for morphologically complex languages

Celtic initial mutations

- Celtic languages have initial mutations usually triggered by context
- bád seoil "sailboat", mo bhád seoil "my sailboat", ár mbád seoil "our sailboat"
- Gender: fear "man", an fear bocht "the poor man", but:
- bean "woman", an bhean bhocht "the poor woman"
- Dative case: ar an mbád seoil "on the sailboat" (or, ar an bhád seoil)
- Genitive plural: leithreas na bhfear
toilet DET.GEN.PL men.GEN.PL
"the men's toilet"
- We consider five mutations: none, lenition, eclipsis, t-prothesis, h-prothesis

Motivating examples

- This was (one of) Google's mistakes in the earlier image:
*tríd an bóthar $\rightarrow \quad$ tríd an mbóthar through the road
- And Intergaelic too, tricked by VSO:
*choinnigh an siopana gcácaía bhí acu kept the shop the cakes that were at-them "the shop kept their cakes"
(cf. siopa na gcácaí"the shop of the cakes", "the cake shop")

Mutations as low-entropy features

- Celtic mutations carry very little information
- Usually determined by the previous two words and initial letter of target word
- Could remove them and one can almost always replace them unambiguously:

Deirtear go iompraíodh sí gunnaí ina carr, iad faoi ceilt i mála plúir.

Ní raibh Gaoth Dobhair ann mar ainm dúiche ná paróiste ar tús, ach mar ainm ar an gaoth / abhainn ónar baisteadh an ceantar, an cainéal nó an inbhear farraige idir an paróiste agus na Rosa, ar a tugtar an Gaoth go dtí an lá inniú, agus an abhainn.

Mutations as low-entropy features

- Celtic mutations carry very little information
- Usually determined by the previous two words and initial letter of target word
- Could remove them and one can almost always replace them unambiguously:

Deirtear go n-iompraíodh sí gunnaí ina carr, iad faoi cheilt i mála plúir.

Ní raibh Gaoth Dobhair ann mar ainm dúiche ná paróiste ar dtús, ach mar ainm ar an ghaoth / abhainn ónar baisteadh an ceantar, an cainéal nó an t-inbhear farraige idir an pharóiste agus na Rosa, ar a dtugtar an Gaoth go dtí an lá inniu, agus an abhainn.

What is entropy?

- Repeat the above experiment, but now imagine that you have $€ 1.00$ to wager on each word
- For "...iad faoi ceilt", you might bet $€ 0.99$ on lenition, and $€ 0.0025$ each on the other four possibilities
- For "idir an paróiste", you might bet $€ 0.75$ on no mutation, $€ 0.24$ on lenition, and $€ 0.003333$ on the other three
- Whatever the correct mutation is, you lose an amount equal to $-\log _{2}$ of your bet (see graph)
- The entropy is your average loss per bet; it measures how hard it is to predict mutations. Our claim is that we can make near-optimal bets to make this loss very small!

A formula for entropy of mutations

- "Average number of bits per word carried by mutations"
- Let $\mu(w)$ be the mutation of w, and let $\sigma(w)$ be w with its mutation removed
- Build a neural network model that predicts P(mutation I word history)
- Compute the $\log _{2}$ loss of this model on a test set

$$
\Lambda=-\frac{1}{N} \sum_{i=1}^{N} \log _{2} P\left(\mu\left(w_{i}\right) \mid \sigma\left(w_{1}\right) \ldots \sigma\left(w_{i}\right)\right)
$$

Factored language models

- Word-based LMs don’t see that bád, bhád, mbád are really the same word
- Since "bád" is most common, harder to predict collocations like "bhád seoil"
- Standard solution: factored language models (Bilmes and Kirchhoff, 2003)
- View each word w as a bundle of features
- Factor $\mathrm{P}(\mathrm{w})$ as a product of feature probabilities conditioned on earlier features
- In our case this is simple! Features are the demutated word and the mutation e.g., $\mathrm{P}($ bhád | ... mo $)=\mathrm{P}($ bád | ... mo) $\mathrm{P}($ Ienition | ... mo bád)

Results

- $2.32193\left(\log _{2} 5\right)$ bits/word for random labels
- 0.75917 bits/word using label prior probabilities
- 0.40571 bits/word using unigram model (label distribution per word)
- 0.10710 bits/word using trigram model
- $\mathbf{0 . 0 6 9 4 9}$ bits/word: NN trained on 50M words, 100k vocabulary, 15 epochs
- More than $1 / 3$ of the loss comes from human errors in test corpus!

Applications

- Improved LM for Irish when used in a factored model on demutated words
- Data-driven grammar checking which robustly handles variant spellings, etc.
- Data-driven estimate of information-theoretic content of mutation system
- Large (quantifiable) divergence between official standard(s) and actual usage

Which mutations carry information?

- Of 10000 examples, correct label was assigned $\mathrm{P}<0.5167$ times, 98.3% correct
- These 167 examples contribute 77% of the total loss!
- 61 of 167 are grammatical errors in the test file
- 30 were assigned low prob only because of lack of context to the right
- 23 were correct but non-standard forms (dhom, e.g.)
- 16 relate to some form of the third person possessive (a, ina, faoina, ...)
- 9 are dialect differences: Ienition vs. eclipsis in the dative
- Various assorted others
- (Note the many cases not here, e.g. indirect vs. direct relativizer, etc.)

Digression: orthographic transparency

- This approach only works for Irish and Scottish Gaelic
- Four of the five mutations in Irish can be trivially and algorithmically removed
- h-prothesis cannot, in general: (hamh/aidh vs. hidrigin)
- Even with a dictionary, some ambiguity: aiste "essay" vs. haiste "hatch"
- I strip all h's and let the neural networks figure it out!
- Scottish Gaelic is transparent in all cases (they write h-)
- Welsh, Cornish, Breton, and Manx Gaelic are not at all transparent!

Gender bias in training

- tá sé/sí ina mhúinteoir/múinteoir
is he/she in-his/her teacher
"he/she is a teacher"
- Discard words with gender baked-in: máistir/máistreás, siúr/bráthair, etc.
- Of remaining 446 occupations, male mutation is more common for 434 (sic!)
- Exceptions: altra, aoi-léachtóir, comhláithreoir, comhordaitheoir, comhstiúrthóir, cuiditheoir, damhsóir, fidléir, gnáthurlabhra, mainicín, striapach, tréidlia
- Strongest male bias: ardcheannasaí, coirnéal, ginearál, giúistís, iascaire, marcach, misinéir, óglach, peileadóir, píobaire, printíseach, seanchaí, tosaí

Gender bias in mutation prediction

Predicted Mutation							
		Masculine	Feminine	Plural	Precision	Recall	F-score
ul	Masculine	189	7	2	0.9594	0.9545	0.9570
Mutation	Feminine	8	29	2	0.8056	0.7436	0.7733

Thank you! / Go raibh maith agaibh!

- https://cs.slu.edu/~scannell/
- https://cadhan.com/
- http://crubadan.org/
- http://indigenoustweets.com/
- http://chuala.me/
- http://intergaelic.com/
- http://corpas.ria.ie/
- https://github.com/kscanne/

