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Abstract

We give the 1rst explicit computations of rational homotopy groups of spaces of “long knots”
in Euclidean spaces. We de1ne a spectral sequence which converges to these rational homotopy
groups whose E1 term is de1ned in terms of familiar Lie algebras. For odd k we establish a
vanishing line for this spectral sequence, show the Euler characteristic of the rows of this E1

term is zero, and make calculations of E2 in a 1nite range. c© 2002 Elsevier Science B.V. All
rights reserved.

MSC: Primary: 57R40; secondary: 55T99; 17B70; 57M25; 57M27; 55R80

1. Introduction

In this paper, we introduce a spectral sequence which converges to the rational
homotopy groups of Emb(I;Rk × I), for k¿ 3, which is the space of embeddings
of an interval in Rk × I with 1xed endpoints and tangent vectors at those endpoints
(essentially, the space of long knots in Rk+1). Our starting point is the work of [11],
which de1nes such spectral sequences in terms of the topology of con1guration spaces.
The paper [11] in turn builds upon work of Goodwillie and his collaborators [4,5,14],
who have built a powerful theory for studying spaces of embeddings in general.

The rational homotopy groups of con1guration spaces, which comprise the E1 term,
are Lie algebras which are well-known. Just as the study of cohomology of embedding
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spaces gives rise to the study of graph cohomology, which has been studied extensively
[2,7,12,13], our complexes of Lie algebras are interesting new objects in quantum
algebra. Similar complexes were described by Kontsevich in his plenary talk [8].

We start by reviewing the computation of the rational homotopy groups of ordered
con1gurations of points in Euclidean space as a graded Lie algebra under Whitehead
product, as well as some basics of free Lie algebras, which appear as subalgebras of
these homotopy groups. At that point, we will have the necessary algebraic background
to de1ne the chain complexes which are the rows of the E1 term of our spectral
sequence. It turns out that through E2, our spectral sequence for the homotopy groups
of Emb(I;Rk × I) depends, up to regrading, only on the parity of k. We focus on odd
k. We prove some fundamental facts about these complexes, such as the vanishing
of their Euler characteristic. We proceed to describe algorithms for computing the
homology of these chain complexes, and in the 1nal section present the results of
these computations in low dimensions. In some cases, the classes which arise in E2

must survive, implying the existence of non-trivial spherical families of embeddings.
Non-zero higher diIerentials are also possible. We end with a brief discussion of the
case of k even, which pertains to the theory of 1nite-type knot invariants.

2. The rational homotopy groups of con�guration spaces

We remind the reader of the computations of the rational homotopy groups of con-
1guration spaces [3] and their Lie algebra structure under Whitehead product. Through-
out this paper, �∗(X ) will denote the homotopy groups of X tensored with the rational
numbers. Let F(M; n) denote the space of ordered con1gurations of n distinct points
in a manifold M . We consider the projection � : F(M; n) → F(M; n − 1) de1ned by
forgetting the last point in the con1guration, which is in fact a 1ber bundle whose 1ber
is M \ {(n − 1) points}. Let  denote the inclusion of the 1ber. When M =Rk+1, the
1bers are homotopy equivalent to

∨
n−1 S

k , and the projection map admits a section,
by adding a point (say in a 1xed direction at a large distance) to a con1guration of
n− 1 points. This section leads to a splitting of the long exact sequence of a 1bration
into split short exact sequences

0→ �i

(∨
n−1

Sk
)
→ �i(F(Rk × I; n))→ �i(F(Rk+1; n− 1))→ 0:

By induction, we 1nd that additively

�i(F(Rk × I; n)) ∼=
n−1⊕
j=1

�i

(∨
j

Sk
)
:

We now compute the structure of the rational homotopy groups �∗(F(Rk × I; n)) as
a Lie algebra under the Whitehead product.
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De�nition 2.1. Let Bo
n (resp. Be

n) be the Lie algebra (super-Lie algebra for Be
n) gen-

erated over Q by classes xij for 16 i; j6 n with relations

1. xij = xji (resp. −xji for Be
n).

2. xii = 0.
3. [xij; x‘m] = 0 if {i; j} ∩ {‘; m}= ∅.
4. [xij; xj‘] = [xj‘; x‘i] = [x‘i; xij].

We call Bo
n and Be

n con4guration space Lie algebras.

Theorem 2.1. There is a Lie algebra isomorphism between �∗(F(Rk × I; n)) and Bo
n

if k is odd or Be
n if k is even.

Proof. We 1rst de1ne classes which generate �∗(F(Rk × I; n)) as a Lie algebra. Pick
a basepoint in F(Rk × I; n), say with zi = (2i; 0; : : : ; 0) for de1niteness. There are ( n2 )
generators of �k(F(Rk× I; n)), corresponding to distinct pairs {i; j} ⊆ {1; : : : ; n}, which
we now realize geometrically. We de1ne bij ∈ �k(F(Rk × I; n)) as the class represented
by the composite of two maps. First, we collapse Sk onto Sk∨I by sending the “southern
hemisphere” of Sk to I through the height function. Next, choose a path �ij from zi
to the point (2j − 1; 0; : : : ; 0) in the complement of the other con1guration points, and
let j denote the map which sends Sk to the unit sphere about the point zj. To de1ne
bij we compose the collapse map above with the map Sk ∨ I to F(Rk × I; n) which
sends t ∈ I to F(Rk × I; n) as (z1; : : : ; zi−1; �ij(t); zi+1; : : : ; zn) and Sk to F(Rk × I; n) as
v → (z1; : : : ; zi−1; j(v); zi+1; : : : ; zn).

To see inductively that these classes are generators of �k(F(Rk × I; n)), we simply
note that bin is equal to the image under ∗ of the generator of �k(

∨
n−1 S

k) de1ned
by the inclusion of the ith wedge factor.

It is simple to check that these bij satisfy the relations for xij in the de1nition of Bo
n.

Note that from the usual graded commutativity of the Whitehead product, brackets in bij
anti-commute when k is odd and commute when k is even. Note that bij = (−1)k+1bji
and bii = 0 so that relations (1) and (2) are satis1ed.

We next verify that the bij satisfy relation (3). Recall that if {f} and {g} are
elements of �k(X ) then [{f}; {g}] = 0 if and only if f ∨ g : Sk ∨ Sk → X extends to
Sk × Sk . If {i; j} ∩ {‘; m}= ∅, the map bij ∨ b‘m may be so extended by sending

v× w → (z1; : : : ; zi−1; ij(v); zi+1; : : : ; z‘−1; ‘m(w); z‘+1; : : :);

where ij is the composite of the collapse map of Sk onto Sk∨I with j∨�ij. Informally
we say that zi can travel around zj and z‘ can travel around zm without having their
paths (the images of Sk under the projection onto the ith and ‘th coordinates) intersect.

Next, we verify that the bij satisfy relation (4). Equivalently, we claim that [bj‘; bij+
bi‘] = 0. Informally, we say that bij + bi‘ is represented by a map in which zi travels
around zj and z‘ but no other points in the con1guration, and this may happen simul-
taneously as zj travels around z‘, giving an extension of (bij + bi‘) ∨ bj‘ to Sk × Sk

similar to the one given for bij ∨ b‘m.
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We claim that relations (1)–(4) are a complete set of relations for �∗(F(Rk × I; n)).
This follows from the fact that these relations may be used to reduce to an additive basis
of Lie algebra monomials of the form [ · · · [bim; bjm] · · · b‘m · · · ], where i; j; ‘¡m6 n.
We exhibit this claim algorithmically when discussing the computations in Section 5;
see in particular Algorithm 5.2.

The 1ber sequence above leads us to identify some subalgebras of �∗(F(Rk × I; n))
which are free Lie algebras. Tensored with the rationals, the homotopy groups of
wedges of spheres, �∗+1(

∨
j S

k) for k¿1, are well known [6,15] to form free Lie
algebra under Whitehead product, with j generators in degree ∗ + 1 = k. Since the
inclusion map  :

∨
n−1 S

k → F(Rk × I; n) is injective on homotopy, and by naturality
of Whitehead products, the image of these homotopy groups under ∗ in �∗(F(Rk×I; n))
is a free Lie algebra which is generated by the classes bin.

In the development of the spectral sequence we will in fact need the rational homo-
topy groups of FT (k; n) =F(Rk× I; n)×(Sk)n. We call FT (k; n) the space of tangential
con1gurations, thinking of the points in Sk as unit tangent vectors at points of a con-
1guration. Recall that the homotopy groups of a product of spaces is a direct sum of
their homotopy groups, and all Whitehead products between these summands are zero.
Let �o (resp. �e) be the free Lie algebra (resp. super-Lie algebra) on one generator.
Let BTo

n denote Bo
n ⊕ n�o and similarly for BTe

n .

Corollary 2.2. There is a Lie algebra isomorphism between �∗+1(FT (k; n)) and BTo
n

if k is odd or BTe
n if k is even.

These isomorphisms respect the gradings involved. We may grade BTo
n according

to the number of generators appearing in a bracket. The dth graded summand of BTo
n

coincides with �d(k−1)+1(FT (k; n)).

3. Free Lie algebras

Let L(A) denote the free Lie algebra over Q on a set A of symbols. For our explicit
computations, we must choose an additive basis for L(A). Natural labels for elements
of free Lie algebras can be obtained from rooted, planar binary trees (hereafter, referred
to as simply a trees) with leaves labeled by elements of A. Such a tree prescribes a
bracketing of the elements which label the leaves. The number of leaves is the degree
of the tree. Trees with a root but no branches (degree one) are identi1ed with the
set of symbols A. When the context is clear, we will identify trees with the free Lie
algebra elements they produce. The obvious product of two trees x and y (a tree with
a new root, left subtree x, and right subtree y) corresponds to the product in the Lie
algebra and will therefore also be denoted [x; y].

A set H of trees is called a Hall set for L(A) [9, Section 4:1] if the following
conditions hold:
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1. H has a total order 6.
2. A ⊂H.
3. If h= [h1; h2]∈H then h2 ∈H and h¡h2.
4. For any tree h= [h1; h2] of degree at least two, we have h∈H if and only if

h1; h2 ∈H, h1 ¡h2, and either h1 ∈A or h1 = [x; y] with h26y.
It is straightforward to show that a Hall set forms an additive basis of L(A) [9,

Theorem 4:9] (cf. Algorithm 5.1 below). The basis elements comprising a 1xed Hall
set will be called Hall trees. It is easy to see that (many) Hall sets exist [9, Propo-
sition 4:1]; for completeness, we give a quick description of an algorithm for creating
one.

Algorithm 3.1 (Generating a Hall set). Given an ordered list of symbols A and a pos-
itive integer d; this algorithm outputs a list Hd consisting of the elements of degree
less than or equal to d in a Hall set for L(A). The list Hd will be sorted according to
the total order on the Hall set.
1. Set a counter n= 1. Copy the list A into Hd.
2. If n=d; terminate the algorithm and output Hd. Otherwise, proceed.
3. Form all products [h1; h2] such that h1; h2 ∈Hd, h1¡h2, the degree of [h1; h2] is

n+1; and condition (4) is satisfied in the definition of Hall set. The only choice to be
made is where to insert this new element in the ordering on Hd; for definiteness in
performing the calculations in Section 6, we insert [h1; h2] into Hd as the immediate
successor to h1; thus h1¡[h1; h2]¡h2 as required.

4. Increment n and go to (2).

Example. The output of Algorithm 3.1 with A= {a; b} and d= 5 is the following
list:

a [a; [[[a; b]; b]; b]] [a; [a; [a; [a; b]]]] [a; [a; [[a; b]; b]]] [a; [[a; b]; b]];

[a; [a; [a; b]]] [a; [a; b]] [[a; [a; b]]; [a; b]] [a; b];

[[a; b]; [[a; b]; b]] [[a; b]; b] [[[a; b]; b]; b] [[[[a; b]; b]; b]; b] b:

The following result will be used in computing the Euler characteristic of the
chain complexes which appear as the rows of the E1 term of our spectral
sequence.

Lemma 3.1 ([9, Corollary 4:14]). The number of Hall trees for L(A) of degree d
equals

1
d

∑
j|d

$(j)|A|d=j;

where $ is the M8obius function.
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4. The spectral sequence

In this section, we present an explicit realization of the spectral sequence introduced
in [11, Section 4] which converges to the rational homotopy groups of Emb(I;Rk × I).
The spectral sequence arises from models of Emb(I;Rk × I) which are reminiscent of
cosimplicial spaces, but whose combinatorics are based on StasheI polytopes instead of
simplices. The entries are (Fulton–MacPherson compacti1ed versions of) the ordered
tangential con1guration spaces FT (k; n) =F(Rk × I; n)× (Sk)n.

We can now describe the E1 term of this spectral sequence. We 1rst describe an
unreduced version (which will be denoted throughout by the addition of a tilde Ẽ

1
),

followed by the reduced version (denoted simply E1). Recall that one way to obtain
the E1 term of the homotopy spectral sequence of a cosimplicial space is by 1rst
passing to homotopy groups of the entries, which if all entries are simply connected
de1nes a cosimplicial abelian group. The E1 term is then the chain complex associated
to this cosimplicial abelian group, which is bi-graded because the homotopy groups
themselves are graded. We show in [11] that even though our models are based on
StasheI polyhedra, applying homotopy groups to these models gives rise to cosimplicial
abelian groups. Hence the Ẽ

1
term of our spectral sequence is the chain complex of

the cosimplicial abelian group

�∗(FT (k; 0)) =pt: =⇒←− �∗(FT (k; 1)) =⇒⇐= �∗(FT (k; 2)) · · ·
Here the coface maps di∗ are induced by maps di on con1guration spaces (or rather

their Fulton–MacPherson compacti1cations) which are “doubling” the ith point in a
tangential con1guration in the direction of the unit tangent vector determined by the
ith factor of Sk , or if i= 0 or n by adding a point to the con1guration at (̃0; 0) or
(̃0; 1)∈Rk × I . The codegeneracy maps si are de1ned by forgetting a point in the
con1guration.

Theorem 4.1 (see Sinha [11]). There is a second-quadrant spectral sequence whose
E1 term is given by Ẽ

1
−p;q = �q(FT (k; p)) and d1 given by

∑
i(−1)idi∗ which converges

to �∗(Emb(I;Rk × I)).

We now make the coface and codegeneracy maps algebraically explicit. Recall from
Corollary 2.2 that the rational homotopy groups of FT (k; n) are isomorphic to the Lie
algebra BTo

n (or BTe
n) generated by classes xij and yi for 16 i; j6 n satisfying

xii = 0, xij = (−1)k+1xji, the other relations of De1nition 2.1, and so that [yi; xj‘] = 0
for all i; j; ‘ and [yi; yj] = 0 for i �= j.

De�nition 4.1. De1ne *‘(i) to be i if i¡‘ and i + 1 if i¿‘. For 06‘6n + 1 de-
1ne @‘ :BTo

n → BTo
n+1 (respectively from BTe

n to BTe
n+1) to be the Lie algebra

homomorphism de1ned on generators as follows.

@‘(xij) =

{
x*‘(i)*‘( j) if i; j �= ‘;

xi*‘( j) + xi+1;*‘( j) if i= ‘;
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@‘(yi) =

{
y*‘(i) if i �= ‘;

xi; i+1 + yi + yi+1 if i= ‘:

De�nition 4.2. For 16 ‘6 n de1ne ,‘ :BTo
n → BTo

n−1 (respectively from BTe
n to

BTe
n−1) to be the Lie algebra homomorphism de1ned on generators as follows.

,‘(xij) =

{
x*‘(i)*‘( j) if i; j �= ‘;

0 if i or j= ‘;

,‘(yi) =

{
y*‘(i) if i �= ‘;

0 if i= ‘:

The following proposition is immediate from the de1nitions of the classes bij and
the maps d‘ and s‘.

Proposition 4.2. Under the isomorphisms of Corollary 2:2 the homomorphisms d‘∗
and s‘∗ coincide with @

‘ and ,‘, respectively.

Making Theorem 4.1 algebraically explicit using Corollary 2.2 and the previous
proposition leads us to the following spectral sequence whose E1 term is de1ned in
terms of con1guration space Lie algebras.

Corollary 4.3. There is a second-quadrant spectral sequence which converges to
�∗(Emb(I;Rk × I)) such that Ẽ1

−n;d(k−1)+1 is isomorphic to the dth graded summand

of BTo
n (resp. BTe

n); Ẽ
1
−n;q = 0 when q − 1 is not a multiple of k − 1; and d1 is

given by
∑

i(−1)i@i.

For the rest of the paper, we focus on the case in which k is odd.
Now we will describe a reduced version of the preceding spectral sequence. The

standard reduction of a cosimplicial abelian group proceeds by replacing the nth group
by the intersection of the kernels of the codegeneracy maps. Such a reduction does not
change the homology of the associated chain complex. First note that the codegeneracy
maps ,‘ :BTo

n → BTo
n−1 respect the direct sum decomposition BTo

n =Bo
n ⊕ n�o.

Restricted to the �o factors, the intersection of the kernel of the ,‘ is zero unless n is
equal to one, in which case it is all of �o. Restricted to the Bo

n factor, the kernel of the
codegeneracy map ,n :Bo

n → Bo
n−1 is the subalgebra generated by the classes xin, which

is in fact a free Lie algebra (see the remarks following the proof of Theorem 2.1).
We identify the kernel of all of the ,‘ as a submodule of this free Lie algebra.

De�nition 4.3. For n¿1, let Md;n be the submodule of of the degree d summand of
BTo

n generated by brackets of the classes xin such that each i from 1 to n− 1 appears
as an index. Let M1;1 =BTo

1.
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Theorem 4.4. There is a spectral sequence which converges to �∗(Emb(I;Rk × I))
whose E1 term is given by E1

−n;d(k−1)+1 =Md;n and whose d1 is the restriction to this
submodule of the d1 of Corollary 4:3.

Note that Md;n = 0 for d¡n− 1, which leads to the following vanishing theorem.

Corollary 4.5. In the spectral sequence of Theorem 4:4; E1
−p;q = 0 if q¡p(k − 1) +

2− k.

It is interesting to note that while the modules Md;n may be de1ned purely in terms
of the free Lie algebra (on n−1 generators), the boundary maps between them require
extending the free Lie algebra to a con1guration space Lie algebra. From the algebraic
de1nition of d1 it is not obvious that its restriction to Md;n maps to Md;n+1.

Since computing the E2 term amounts to computing the cohomology of the com-
plexes Md;∗, as a warmup we will compute the rank of Md;n, which we denote R(d; n),
and will show that .(Md;∗) = 0. Recall that the number of Hall trees of degree d with
n symbols is equal by Lemma 3.1 to (1=d)

∑
j|d $(j)nd=j. We may produce a basis of

Md;n by 1rst considering all brackets of degree d and throwing away ones in which
fewer than n elements appear. We 1nd that

R(d; n) =
1
d

n∑
i=1

(−1)n−i

(
n

i

)∑
j|d

$(j)id=j:

We pause to de1ne S(d; n) =
∑n

i=0 (−1)n−i( ni )i
d, which are essentially Stirling num-

bers. There is a combinatorial interpretation of S(d; n) as the number of surjections
from a d element set onto an n element set (to verify this, count all set maps and
subtract the non-surjections). Note as well that the S(d; n) have a generating function,
as

∞∑
m=0

S(m; n)
xm

m!
= (ex − 1)n:

Reordering the summations of R(d; n) we 1nd the following:

Proposition 4.6. R(d; n) = (1=d)
∑

j|d $(j)S(d=j; n).

We may give R(d; n) a combinatorial interpretation in line with this equality as the
number of surjections of a d element set to an n element set which are not invariant
under any cyclic permutation of the d element set, modulo cyclic permutations of the
d element set. It would be interesting to 1nd a bijection between such equivalence
classes of surjections and a basis of Md;n. Such a combinatorial interpretation would
be particularly interesting for Mn;n which, along with its

∑
n action by permuting the

letters, is known as Lie(n) and arises in the calculus of functors approach to homotopy
theory [1].
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Theorem 4.7. The Euler characteristic of Md;∗ is zero for d¿2.

Proof. The Euler characteristic of the complex Md;∗ is by de1nition
∑d

‘=1 (−1)‘R(d; ‘),
which after applying Proposition 4.6, reversing the order of summation, and ignoring
zero terms, is equal to

1
d

∑
j|d

$(j)
d=j∑
‘=1

(−1)‘S(d=j; ‘):

We claim that
∑m

‘=1(−1)‘S(m; ‘) = (−1)m, which can be veri1ed by computing the
coeOcient of xm=m! of

∑m
p=0(−1)p(ex − 1)p. Hence the Euler characteristic is equal

to (1=d)
∑

j|d $(j)(−1)d=j. Let t(d) =d.(Md;∗) =
∑

j|d $(j)(−1)d=j. Applying MPobius
inversion we 1nd

∑
j|d t(j) = (−1)d. Computing that t(1) =− 1 and t(2) = 2, we see

by induction that t(d) = 0 if d¿ 2, proving the theorem.

5. Algorithms

In this section, we provide a detailed description of the methods used to compute
the boundary operators in the complexes described above. These algorithms can be
performed by hand for the complexes of small degree d, but are best implemented on
the modern electronic computer otherwise.

Because the product of two Hall trees is not necessarily a Hall tree, one must have
an algorithm which takes an arbitrary tree representing a free Lie algebra element,
and expresses it as a linear combination of Hall trees. The proof that this algorithm
terminates and produces the desired result is contained in the proof of Theorem 4:9 in
[9].

Algorithm 5.1 (Halli1cation). Given an integral linear combination of trees represent-
ing an element of L(A); this algorithm outputs a linear combination of Hall trees
representing the same element of L(A).
1. If each tree appearing with a non-zero coefficient in the linear combination is Hall,

terminate the algorithm and output the linear combination. Otherwise, choose t to
be the first non-Hall tree appearing in the linear combination and proceed.

2. Find a subtree s= [s1; s2] of t which is not Hall but whose children s1 and s2 are
Hall. This can be achieved by a simple recursion, noting that the degree one trees
(single letters) are Hall.

3. If s1 = s2; then remove t from the linear combination and go to step (1).
4. If s1 ¿s2; then switch s1 and s2 in t; multiply the coefficient of t by −1; and go to

step (1).
5. We have s1¡s2. In this case, s1 cannot be a single letter, or else s would be Hall. So

s1 = [x; y]. We must have y¡s2 again using the fact that s is not Hall. Replace t in
the linear combination by the sum of two trees obtained by replacing s= [[x; y]; s2]
by [[x; s2]; y] and [x; [y; s2]] respectively, and go to step (1).
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The following algorithm uses the relations for Bo
n from De1nition 2.1 and the Jacobi

identity to express elements of Bo
n in a standardized form. It will be used in the

computation of the boundary operator @n in Algorithm 5.3 below.

De�nition 5.1. We say that a bracket in the classes xij for 16i; j6n is pure if either
all xij which appear are of the form xin or none are of this form.

Algorithm 5.2 (Standard basis for Bo
n). Given an element x of Bo

n expressed as a linear
combination of brackets in the xij, this algorithm computes a linear combination of pure
brackets also representing x.
1. If each bracket appearing with a non-zero coefficient in the linear combination is

pure, terminate the algorithm and output the linear combination. Otherwise, choose
t to be the first bracket in the linear combination which is not pure and proceed.

2. Find a smallest degree sub-bracket s= [s1; s2] of t which is not pure. A simple
recursion finds this sub-bracket.

3. If the degree of s is two, go to step (4), otherwise go to step (7).
4. Since the degree of s is two, we have s1 = xij and s2 = x‘m with either j= n or m= n.

If j= n; go to step (5) and if m= n; go to step (6).
5. If i= ‘; then replace t in the linear combination by a new bracket obtained from t

by replacing s= [xin; xim] with [xmn; xin], using relation (4) in the definition of Bo
n. If

i=m, then do the same thing, replacing s= [xmn; x‘m] with [x‘n; xmn] by the same
relation. In all other cases, remove t from the linear combination (applying relation
(3) in the definition of Bo

n). Start over at step (1).
6. If i= ‘; then replace t in the linear combination by a new bracket obtained from t

by replacing s= [xij; xin] with [xin; xjn]. If ‘= j, then do the same thing, replacing
s= [xij; xjn] with [xjn; xin]. In all other cases, remove t from the linear combination.
Start over at step (1).

7. If the degree of s1 is greater than one, say s1 = [x; y], we use the Jacobi identity to
replace t in the linear combination by the sum of two brackets obtained from t by
replacing the sub-bracket s= [[x; y]; s2] by [[s2; y]; x] and [[x; s2]; y] respectively. If
s1 has degree one, then s2 must have degree at least two, say s2 = [x; y], and we
do the same thing, replacing s= [s1; [x; y]] by [x; [s1; y]] and [y; [x; s1]], respectively,
and adding the results. In either case, start over at step (1).

A simple induction argument shows that this algorithm terminates and produces the
desired result. Namely, we associate to a bracket t the pair (a; b) where a is the
number of generators xij with j¡n appearing in t, and b is the degree of the smallest
impure sub-bracket found in step (2). We order such pairs lexicographically, with the
minimum (0; 0) being achieved by pure brackets. At every step, this algorithm produces
brackets whose associated pairs are less than that of the original. Steps (5) and (6),
corresponding to b= 2, clearly reduce a. Step (7) leaves a unchanged but reduces b,
since the sub-bracket [x; y] of s which is initially pure becomes impure in all terms
which occur after applying the Jacobi identity. Finally note that since b in such an
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associated pair is bounded by the degree of the bracket, there are only 1nitely many
pairs less than a given one, so the algorithm must terminate after a 1nite number of
recursive steps.

Note that the terms in the linear combination output by Algorithm 5.2 which do
not involve any xin can be run recursively through the algorithm as elements of Bo

n−1,
yielding the standard form claimed in the proof of Theorem 2.1.

The 1nal algorithm is the heart of the calculation; it computes @‘ for ‘= 0; : : : ; n,
exploiting the fact that these maps are Lie algebra homomorphisms. Observe that @n+1

is simply the natural inclusion of BTo
n into BTo

n+1 and therefore requires no detailed
description.

Algorithm 5.3 (Boundary operator). Given a basis element t of Md;n (expressed as
a Hall tree) and an integer ‘ between 0 and n, this algorithm computes @‘(t) as
a linear combination of degree d elements of Bo

n+1 in the standard form given by
Algorithm 5.2.
1. If the degree of t is greater than one, say t= [t1; t2], then recursively call Algorithm

5.3 to compute @‘(t1) and @‘(t2). Set @‘(t) = [@‘(t1); @‘(t2)] and proceed to step
(2). If the degree of t is one, go to step (4).

2. If ‘= n, then use Algorithm 5.2 to express the answer @‘(t) in standard form. Proceed
to step (3).

3. Use Algorithm 5.1 to express @‘(t) in terms of Hall trees. Terminate the algorithm
and return @‘(t).

4. If ‘¡n, proceed to step (5), otherwise go to step (6).
5. Assume t= xin. If i¡‘, set @‘(t) = xi;n+1. If i¿‘, set @‘(t) = xi+1; n+1. If i= ‘, set

@‘(t) = xi;n+1 + xi+1; n+1. Go to step (3).
6. Assume t= xin. Set @‘(t) = xin + xi;n+1 and go to step (2).

An example of this algorithm is worked out by hand in the next section.

6. Results

In this section, we present some results of the computations described in the previous
section. We will choose the gradings to correspond to the case k = 3, i.e. embeddings
in R4.

First, we note that in the degree one case, we have E1
−1;3 =Q, generated by y1,

E1
−2;3 =Q generated by x12, and d1 is an isomorphism. In degree two, the only non-zero

entry is E1
−3;5 =Q, generated by [x13; x23], implying E2

−3;5 =Q.
We proceed by working out the 1rst non-trivial boundary operator d1 :E1

−3;7 →
E1
−4;7 by hand. These spaces are by de1nition M3;3 and M3;4. Bases are obtained by

creating, with Algorithm 3.1, Hall bases for the free Lie algebra generated by {x13; x23}
(resp. {x14; x24; x34}) and selecting the elements which have degree 3 and such that all
possible values of i appear. It turns out that each space is two-dimensional; the 1rst
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is generated by [x13; [x13; x23]] and [[x13; x23]; x23] and the second by [x14; [x24; x34]] and
[[x14; x34]; x24]. Algorithm 5.3 is straightforward for ‘ �= 3; in these cases we have

@0[x13; [x13; x23]] = [x24; [x24; x34]];

@0[[x13; x23]; x23] = [[x24; x34]; x34];

while

@1[x13; [x13; x23]] = [x14 + x24; [x14 + x24; x34]]

= [x14 + x24; [x14; x34] + [x24; x34]]

= [x14; [x14; x34]]+[x14; [x24; x34]]+[x24; [x14; x34]]+[x24; [x24; x34]]

= [x14; [x14; x34]]+[x14; [x24; x34]]−[[x14; x34]; x24]+[x24; [x24; x34]]

and

@1[[x13; x23]; x23] = [[x14 + x24; x34]; x34]

= [[x14; x34] + [x24; x34]; x34]

= [[x14; x34]; x34] + [[x24; x34]; x34];

where the last line in the 1rst case comes from an application of Algorithm 5.1 for
the free Lie algebra over {x14; x24; x34}. Similarly we have for ‘= 2

@2[x13; [x13; x23]] = [x14; [x14; x24]] + [x14; [x14; x34]]

@2[[x13; x23]; x23] = [[x14; x24]; x24]+[[x14; x24]; x34]+[[x14; x34]; x24]+[[x14; x34]; x34]

= [[x14; x24]; x24] + [[x14; x34]; x34]

+ 2 ∗ [[x14; x34]; x24] + [x14; [x24; x34]];

where again the last line comes from Algorithm 5.1. Finally, as noted above, @4 is the
natural inclusion

@4[x13; [x13; x23]] = [x13; [x13; x23]];

@4[[x13; x23]; x23] = [[x13; x23]; x23]:

The case ‘=3 is much more computationally taxing, as it requires the use of Algorithm 5.2

@3[x13; [x13; x23]] = [x13 + x14; [x13 + x14; x23 + x24]]

= [x13; [x13; x23]] + [x14; [x14; x24]] + [x24; [x34; x14]]

+[x14; [x34; x24]] (Alg: 5:2)

= [x13; [x13; x23]] + [x14; [x14; x24]]

+[[x14; x34]; x24]− [x14; [x24; x34]]; (Alg: 5:1)
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Table 1
E1 term for k = 3

Q120 Q300 Q260 Q89 Q9 13

12
Q24 Q48 Q30 Q6 11

10
Q6 Q9 Q3 9

8
Q2 Q2 7

6
Q 5

4
Q Q 3

−7 −6 −5 −4 −3 −2 −1

@3[[x13; x23]; x23] = [[x13 + x14; x23 + x24]; x23 + x24]

= [[x13; x23]; x23] + [[x14; x24]; x24] + [[x14; x34]; x24]

+[[x24; x34]; x14] (Alg: 5:2)

= [[x13; x23]; x23]+[[x14; x24]; x24]+[[x14; x34]; x24]

−[x14; [x24; x34]]: (Alg: 5:1)

Since d1 =
∑

i(−1)i@i, we have from the above calculations that

d1[x13; [x13; x23]] = 0

d1[[x13; x23]; x23] = 2 ∗ [x14; [x24; x34]] + [[x14; x34]; x24]:

and so the matrix for the boundary operator with respect to our chosen bases is given
by (

0 2

0 1

)
:

We conclude that the boundary operator has rank one, and so E2
−3;7

∼= E2
−4;7

∼=
Q. Further (computer) calculations yield the E1 and E2 terms for k odd given in
Tables 1 and 2.

These low-dimensional computations do not reveal any regular behavior. Note that,
as allowed because the Euler characteristic of the rows is zero, some rows vanish while
most do not. Note as well that there is no additional vanishing along the edge of the
vanishing line of Corollary 4.5.

All of the classes in Table 2 survive to E∞ except perhaps those in bidegrees
(−6; 13) and (−3; 11) which could support a d3 diIerential.
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Table 2
E2 term for k = 3

Q Q 13

12
Q2 Q Q 11

10
9
8

Q Q 7
6

Q 5
4
3

−7 −6 −5 −4 −3 −2

Theorem 6.1. There are non-trivial classes in �n(Emb(I;R3 × I)) for n= 2; 3; 4; 5; 6.

It would be interesting to 1nd explicit spherical families of embeddings which rep-
resent these classes. One expects the evaluation map

1n × Emb(I;Rk × I)→ F(Rk × I; n)× (Sk)n

to play a central role in relating these homotopy groups to those of F(Rk× I; n)×(Sk)n

which appear in our spectral sequence.
We conclude with a brief description of some of the methods used to verify the

computer calculations (beyond merely computing examples by hand and comparing
with the computer output, which was done extensively). Algorithm 3.1 was checked
by an independent function which veri1ed that the generated trees were Hall, and
checked the number of elements in the resulting Hall set against the dimension count
given by Lemma 3.1. It was veri1ed in the course of computing the E2 term in Table 2
that d2 = 0 for each of the chain complexes comprising E1. A similar mathematical fact
which was not hard-coded into the application is that the image of Md;n under d1 lands
in Md;n+1 despite the fact that this is not the case for the individual homomorphisms @‘.
The ranks of the boundary operators were veri1ed using the linear algebra capabilities
of a symbolic mathematics package (Maple). Finally, a nice check of the system as
a whole was provided by varying the algorithm for generating Hall sets (noting the
choices made in Algorithm 3.1) and verifying that the ranks of all boundary operators
remained unchanged.

7. Further work

In further work [10] we will investigate the case of k even, which includes the case of
classical knots. Though in the case of classical knots the spectral sequences of [11] do
not necessarily converge, one can use those methods to produce knot invariants, which
we show are of 1nite type. In particular, an optimistic view of rational homotopy theory
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predicts that the module of classes along the vanishing line of our spectral sequence
(which for k = 2 is the anti-diagonal) is isomorphic to the module of primitives in the
Hopf algebra of 1nite type invariants [2]. To prove such a conjecture would involve
relating the combinatorics of con1guration space Lie algebras to those of Feynman
diagrams, which could give a satisfactory explanation in terms of algebraic topology
of the appearance of Feynman diagrams in the study of knots.
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