
Noname manuscript No.
(will be inserted by the editor)

Statistical Unicodification of African Languages

Kevin P. Scannell

Received: 1 January 2010 / Accepted: 16 November 2010

Abstract Many languages in Africa are written using Latin-based scripts, but often

with extra diacritics (e.g. dots below in Igbo: i., o. , u. ) or modifications to the letters

themselves (e.g. open vowels “e” and “o” in Lingala: ε, O). While it is possible to render

these characters accurately in Unicode, oftentimes keyboard input methods are not

easily accessible or are cumbersome to use, and so the vast majority of electronic texts

in many African languages are written in plain ASCII. We call the process of converting

an ASCII text to its proper Unicode form unicodification. This paper describes an open-

source package which performs automatic unicodification, implementing a variant of

an algorithm described in previous work of De Pauw, Wagacha, and de Schryver. We

have trained models for more than 100 languages using web data, and have evaluated

each language using a range of feature sets.

Keywords Diacritic restoration · unicodification · under-resourced languages ·
African languages · machine learning

1 Introduction

The problem traditionally known as “diacritic restoration” in the European context

involves inserting appropriate diacritics into an input text given as ASCII characters,

in order to restore it to its “proper” form. In Africa, many languages use Latin-based

scripts that have been extended with diacritics not found in European languages, or

with variants of the Latin characters themselves (N, O, ã, á, ...) which are available

in Unicode but not in any of the 8-bit ISO 8859 character sets. We therefore propose

extending the scope of the diacritic restoration problem to include the restoration

of any ASCII text to its proper Unicode form, and dub this more general process

“unicodification”.

Kevin P. Scannell
Department of Mathematics and Computer Science
Saint Louis University
St. Louis, Missouri, USA
E-mail: kscanne@gmail.com



2

It is hard to overstate the importance of unicodification in the context of African

languages, and under-resourced languages more generally. Much of modern natural lan-

guage processing (NLP) relies on large corpora for training statistical models, corpora

that are unavailable for most African languages. The web offers some hope, as more and

more local language communities extend their presence on the web through blogs and

other forms of online publishing. Unfortunately, for a variety of reasons (lack of proper

keyboards, clumsy input methods, unfamiliarity with proper orthography, etc.), many

texts found on the web are not written using proper Unicode characters. Automatic

unicodification allows the construction of high-quality corpora from web data, thereby

paving the way for the development of statistical NLP tools. Looking to the future, we

expect the quality of web corpora themselves to improve, as integration of unicodifi-

cation into authoring tools helps overcome both the lack of proper keyboards and any

unfamiliarity with proper orthography that may exist in some language communities.

This project ties in closely with earlier work on the web crawler “An Crúbadán” [10]

which has been used to produce corpora for almost 650 languages. These corpora have

proved immensely valuable in developing basic technology for many under-resourced

languages; they have been used in software for accessibility, predictive text for mobile

devices, spell checkers and grammar checkers, machine translation engines, and even

in audiometry for hearing-impaired children [1], [5]. Many other researchers working

on African languages are turning to the web for valuable training data as well; see in

particular [3] and [9] in this volume.

The Crúbadán corpora are also the primary source of training data for the models

evaluated in this paper. Indeed, this is one of the ancillary research questions we hope

to examine here: just how effective are (noisy) web corpora when used as training data

for statistical NLP? Most researchers working on major languages are able to make

use of high-quality corpora consisting of books, well-edited newspaper text, and the

like. This is not realistic for most languages, and therefore the effectiveness of free web

corpora as training data becomes an important question.

Yarowsky [18] provided a purely data-driven approach to the problem of diacritic

restoration in 1994, focusing on French and Spanish. Quite a few other papers have

looked at the problem of diacritic restoration for European languages (see [13], [11], [15],

[16], [6]), often relying on pre-existing NLP resources such as electronic dictionaries and

part-of-speech taggers. Mihalcea [7], [8] introduced a language-independent approach

based on statistics at the character level, making it well-suited for under-resourced

languages. De Pauw et al [17], [2], examined this approach for a number of African

languages. These latter papers were the direct inspiration for the present work; in

particular, [2] calls for a “further investigation [of the machine learning approach] on

a larger array of African languages” which we have attempted to provide here.

2 Unicodification

The precise meaning of unicodification rests on the definition of the inverse process of

asciification. This is a deterministic mapping from a subset of all Unicode characters

into (strings of zero or more) ASCII characters (Unicode 0000-007F). For reasons of

space we do not give the full specification of asciification here, but most of the map-

pings are self-evident. Since we are focused on Latin-based alphabets, the domain of

asciification lies within the following ranges:

– 00A1-00FF: Latin-1 Supplement



3

– 0100-017F: Latin Extended-A

– 0180-0233: Latin Extended-B

– 0250-02AD: IPA Extensions (some: e.g. 0253 in Hausa, 0254 in Lingala, etc.)

– 02B9-02EE: Spacing Modifier Letters (map to empty string)

– 0300-0362: Combining Diacritical Marks (map to empty string)

– 1E00-1EF9: Latin Extended Additional

Note that some characters (combining diacritics) map to the empty string under

asciification, and others map to more than one character (æ→ ae, ß→ ss, etc.).

One could conceivably also include standard Latin transliterations of other Unicode

scripts in this framework: Cyrillic, Greek, Ethiopic (Ge’ez), etc. but we have not done

so. There is also related work on diacritic restoration for Arabic script, again not

considered here.

Unicodification is defined to be the (non-deterministic, language-dependent) inverse

to asciification. Note that this definition is problematic for many African languages for

which there is no agreed-upon “correct” orthography, and several unicodifications of

the same text are possible. Therefore the evaluations performed below on “languages”

should be taken with a grain of salt. Ideally, we would have trained and evaluated mod-

els according to “writing systems” [14]; e.g. for Hausa we would need to distinguish at

least the following training sets: “no length or tone marks”, “with tone but no length”,

“with tone and long vowels doubled”, “with tone and long vowels with macrons”, “with

tone, long vowels unmarked, short vowels marked with cedilla”, variants of these with

the “hooked y” used in Niger, etc. We leave such extensions for future work.

3 The algorithms

Our program crams together code for training, evaluating, and unicodification into

about 500 lines of Perl.1 Some of the algorithms described below assume the existence

of a lexicon for the language. The lexicon is “layered”; this means that at training time,

it is possible to specify, in addition to the raw training text, a list of words known to

be correct (the first layer) and also a second layer of words that are accepted as correct

but perhaps reflect non-standard spellings. The third layer of the lexicon consists of

words seen in the raw training text that do not appear in the first two layers.

We performed evaluations of the following algorithms (see Tables 1 and 2):

– BL: The baseline algorithm simply leaves all characters as ASCII. This is usu-

ally the same as a character-level unigram model since in most cases unmarked

characters are more common than their marked or extended counterparts.

– LL: The lexicon-lookup algorithm assumes the existence of a 3-layer lexicon for the

language as described above. For each ASCII word in the input text, this algorithm

first finds all words in the first layer whose asciification equals the input word. If

there is just one such word, this is taken as the output. If there is more than one,

the most common one in the training data is taken. If there are none in the first

layer, this is repeated at the second, and then third layers. If no word is found

in any of the three layers, the word is left as ASCII. Note that if no clean word

1 Source code and training data are available from
http://sourceforge.net/projects/lingala/ (under the GNU GPLv3, as the package
charlifter), or directly from the author.



4

list exists (as is the case for many African languages), then the first two layers are

empty and only the third layer (the words seen in the training texts) is used.

– LL2: This is the same as LL, but in ambiguous cases where more than one possible

unicodification for a given word exists in the lexicon, a word-level bigram model

is used to determine the output. Trigrams would have been feasible for many lan-

guages, but only a handful of these are African languages. We therefore restricted

ourselves to bigrams for the sake of uniformity in the evaluation.

– FS1: This is the first of the character-level statistical models. It is possible to

specify a feature set (FS) at training time, where features are character n-grams

in a neighborhood of the character to be unicodified. We use the notation (p, n) for

an n-gram that begins at position offset by p from the target character; so (−3, 3)

is the trigram preceding the character, (+1, 3) is the one following it, etc. The FS1

model uses features (−3, 1), (−2, 1), (−1, 1), (+1, 1), (+2, 1), (+3, 1), i.e. the three

single characters on either side of the target character. This was considered in [7]

for Romanian.

– FS2: Features (−5, 1), (−4, 1), (−3, 1), (−2, 1), (−1, 1), (+1, 1), (+2, 1), (+3, 1),

(+4, 1), (+5, 1), i.e. five single characters on each side. This was also used in [7]

and was the main approach in [2].

– FS3: Features (−4, 3), (−3, 3), (−2, 3), (−1, 3), (0, 3), (+1, 3), (+2, 3). These were

used in the paper [17], but instead of using them to classify the target character (as

we do), they classify the three trigrams containing the target character and then

use a voting system (two out of three) to select the best unicodification.

– FS4: Features (−3, 3), (−1, 3), (+1, 3), i.e. the trigrams immediately preceding the

target, centered on it, and following it. While we only report results for FS1-FS4

in Tables 1 and 2, extensive experimentation with other feature sets has shown

FS4 to be consistently among the best-performing algorithms across languages.

– CMB: This algorithm uses LL2 for words that appear in the lexicon, and for

words not in the lexicon it uses the best-performing statistical algorithm for the

given language among FS1-FS4.

We implemented a Naive Bayes classifier for both word-level and character-level

modeling. Unicodification proceeds from left to right, treating each ambiguous charac-

ter in the input as an independent classification problem (in particular, ignoring the

results of any previous unicodifications). All models were trained on lowercased text,

and smoothed using additive smoothing. For simplicity, the same smoothing parameter

was used across all languages, independent of the size of the various training corpora,

and this likely degraded performance to a certain extent. With additional time and

computing power it would be an easy matter to tune the smoothing for individual

languages and we plan to do this in the near future.

4 Evaluation

4.1 Experimental Setup

As mentioned in the introduction, the training corpora were assembled from the web

using the Crúbadán web crawler [10]. Through manual inspection of character fre-

quency profiles, and relying on input from native speakers, we selected only documents

that use the correct Unicode characters for each language. These were then segmented

into sentences, and any sentences that appeared to contain pollution (English text or



5

boilerplate text) were discarded. The training corpora were randomly sampled from

the remaining sentences.

When an open source spell checker existed for a given language, we used it to gener-

ate a word list for the first layer of the lexicon. For a small number of morphologically-

complex languages (Finnish, Estonian, etc.), the resulting word lists would have been

much too large, so we kept only the generated words that also appeared somewhere in

the full web corpus for the language.

Finally, we evaluated each of the eight algorithms described in section 3 using

ten-fold cross validation. We report word-level accuracy for each algorithm (following

[2], where it is argued that this is a more meaningful measure than character-level

accuracy).

4.2 The Tables

A useful measure of the difficulty of the diacritic restoration problem for a given lan-

guage (the “lexical diffusion” of the language) was introduced in [2]. Essentially this is

the average number of possible unicodifications for a given ASCII form; more precisely,

it is obtained as the number of words in the lexicon divided by the number of distinct

word forms after asciifying the lexicon. We found, however, that estimates of the lexi-

cal diffusion depended greatly on the corpora we used, with especially inflated values

coming from noisy web corpora. Lexical diffusion may also overstate the difficulty of

the problem when there exist high and low frequency word pairs with the same asci-

ification (e.g. Romanian s,i (“and”) and si (rarely, a musical note)) – these count as

much as pairs that are harder to disambiguate. For similar reasons, it is also somewhat

misleading to use BL as a measure of difficulty, because it makes languages that have

common words with diacritics (again, Romanian s,i) appear more difficult than they

really are.

Instead, we report in column LD1 the percentage of words in the training corpus

that are incorrectly resolved by always choosing the most frequent candidate word as

the unicodification. Like lexical diffusion, this measure increases when there are many

possible unicodifications, but only in proportion to the frequency of the candidates in

the corpus. This also makes LD1 more robust with respect to noise and more stable

across corpora.

In Tables 1 and 2, the column labeled “639” contains the ISO 639-3 code for the

language2, “Train” indicates the number of words in the training set, “Lex” is number

of words in the lexicon (all layers), and the remaining columns represent word-level

accuracy scores for the eight algorithms, computed using ten-fold cross validation.

The best-performing feature set (FS1-FS4) for each language is rendered in ital-

ics; this is the algorithm used along with LL2 in the CMB column. As usual, the

best-performing algorithm overall is marked in boldface (with some ties broken at

hundredths of a percent).

2 For reasons of space we have not listed the language names in the tables; see
http://www.sil.org/ISO639-3/codes.asp for the full list.



6

4.3 Analysis of Results

Because we used different training sets and different machine learning algorithms (naive

Bayes vs. memory-based learning), our results are not directly comparable to those

reported in [2]. Nevertheless, our column FS2 uses the same features as were used

in that paper, and we observe that our results are in all cases lower than the ones

in [2], sometimes much lower. This seems to be due almost entirely to noise in the

web corpora we used for training. As a partial verification of this, we retrained the

French model using a high-quality corpus (3.3M words from the Hansards) and obtained

results comparable to [2] (86.6% vs. 88.3% in their paper) even with a fraction of the

training data and a weaker learner. This gives a partial answer to the question raised

in the introduction: the use of web texts for training in statistical NLP can have a

substantial negative impact on system performance, and therefore the “web as corpus”

community would benefit from further research on corpus-cleaning algorithms (cf. the

CLEANEVAL competitions [4]).

The second takeaway message from the evaluation tables is that the trigram models

perform consistently better than the models found in [2], [7], and [8]. This confirms

an intuition which was based upon consideration of examples like the common Irish

word freisin (“also”). Algorithms FS1 and FS2 incorrectly restore this word as fréisin,

despite the much greater prior probability of the unaccented “e”. This is due in large

part to the fact that there is a greater chance of seeing an “i” if you assume the previous

character is “é” than if you assume it is “e” (e.g. féidir, éigin, léiriú, féin); indeed the

same is true for the “i” in position +3 (as exhibited by some of these same examples).

On the other hand, the trigram model resolves this correctly because the full trigram

-isi- almost never occurs following “é” but is quite common after “e” (freisin, feisire,

speisialta, seisiún...).

A similar example in a more familiar language would be the word traitement in

French, which FS1 and FS2 restore incorrectly as traitément in part because the

probability of seeing a “t” before an “é” (été, côté, vérité, etc.) is much greater than

the probability that a “t” precedes an “e”. It is worth emphasizing that these are

conditional probabilities: the bigram -te- is, in raw terms, much more common than

-té-, but whereas “t” is the letter most likely to precede an “é” in French, it is only the

fourth most common letter preceding an “e” (after “d”, “l”, and “r”). In contrast, all

of our trigram models give the correct output traitement. Examples like these appear

to be the rule rather than the exception across languages, and this is borne out by the

data in Tables 1 and 2.

A comparison of the two trigram models (FS3 and FS4) shows that FS3 is superior

when there is a small amount of training data available (in particular, dominating in

Table 1), while FS4 is generally better when more data is available.

For most languages the bigram word model utilized in LL2 offers only a negligible

increase in performance over LL. Not surprisingly, we see the biggest performance boost

for languages with high LD1 values (more frequent ambiguities) and large training

corpora for building an accurate bigram model.

Something perhaps surprising in the results is that LL2 often outperforms the

combination CMB. This is saying that for words not in the lexicon, leaving them

as pure ASCII is a better option than trying to restore them statistically. This is

true despite the fact that all of the statistical restoration models outperformed the

baseline when evaluated on the full texts. This apparent paradox is again a consequence

of using noisy web data; when the lexicon is large, most of the unseen words will



7

either be pollution (often English, no diacritics), or else words in the language but

written incorrectly without diacritics, so leaving these as ASCII indeed leads to the

best performance.

5 Applications

We foresee many applications for our software. Many of the Crúbadán corpora for

African languages consist primarily of ASCII text, and for those languages which are

properly written with tone marks or extended Latin characters, our application offers a

way to generate large corpora in the correct orthography, automatically. Even in cases

where the performance of the unicodification is not perfect, it at least minimizes the

amount of manual correction needed to create a high-quality corpus. We have already

done this for Lingala, a language having more than a million words of text on the web,

but with the vast majority being pure ASCII. The corpus obtained by unicodifying

this text was used to create the first Lingala spell checker as well as a predictive

text application. This is a good illustration of how the construction of a high-quality

corpus opens the door to a world of statistical NLP applications as discussed in the

introduction.

A second important application is search. Someone who uses proper Unicode char-

acters in a search query might not find results that are written in ASCII, and conversely

ASCII queries will not retrieve results written in the proper encoding. The Irish lan-

guage offers an extreme example of this: in the 1990’s, an acute accent (śıneadh fada)

in Irish was often typed as a forward slash following the vowel (si/neadh fada, for ex-

ample). Because of this, some of the largest repositories of Irish language material on

the web are essentially invisible to the standard search engines.

A final obvious application of the software is the simplification of keyboard input.

We would like to integrate our unicodification software into free text editors like Vim

and OpenOffice.org, allowing users to enter text in plain ASCII and have the correct

orthography appear on the screen “magically”, even if they are not completely com-

fortable with the correct orthography, as is common among speakers of many African

languages (Kikongo, Lingala, Kinyarwanda, etc.). We have recently made a start in this

direction (together with an undergraduate student, Michael Schade) by creating a free

web service and API for unicodification, as well as a Firefox add-on that implements

this API.3 See [12] for related work on French.

To date, we have trained the system for 115 languages, but as can be seen especially

in Table 1, many models were trained with a minimum of data. We therefore welcome

contributions of additional (or cleaner) training data for any of these languages. We are

also keen to develop models for as many new languages as possible. There is sufficient

training text available on the web for about 50 more Latin script languages (these are

listed in the README in the charlifter package). For languages beyond these, we

would welcome contributions of texts from local language communities who feel they

might benefit from the software.

Acknowledgements We are grateful to Nuance Communications, and especially Ann Aoki
Becker, for their support and for their ongoing commitment to developing input technology for
under-resourced languages around the world. Thanks also to my student Michael Schade for

3 See http://accentuate.us/ for more information.



8

Table 1 Word level accuracy scores on plain text: African languages

639 Train Lex LD1 BL LL LL2 FS1 FS2 FS3 FS4 CMB

ada 14k 1.2k 4.44 62.8 93.8 93.8 87.8 87.0 92.6 92.5 94.0
aka 177k 16k 4.18 70.6 94.1 95.8 84.3 84.9 90.3 90.1 95.9
bam 342k 17k 2.60 69.8 95.2 95.4 83.7 83.2 89.2 89.2 95.6
bas 13k 1.7k 1.39 72.0 96.0 96.0 80.2 80.9 88.2 88.3 96.1
bci 15k 1.5k 4.90 59.7 92.3 92.4 75.5 74.2 83.3 82.8 93.1
bfa 12k 1.8k 0.31 76.5 97.4 97.4 84.1 84.3 93.4 92.4 97.9
bin 11k 1.5k 1.98 66.5 94.7 94.7 80.5 80.7 92.6 92.3 95.9
bum 39k 4.1k 3.65 69.6 92.4 92.4 79.5 79.1 85.4 85.2 92.8
byv 8k 1.0k 6.86 59.4 89.0 89.0 68.5 67.8 79.7 79.0 89.4
dua 36k 4.5k 7.82 74.5 88.4 88.8 76.0 75.4 81.4 80.2 88.5
dyo 12k 3.5k 1.40 78.0 92.9 92.9 78.0 79.2 87.3 85.0 93.1
dyu 10k 1.1k 0.52 72.7 97.2 97.2 84.4 84.6 91.8 91.4 98.2
efi 20k 2.9k 5.08 71.4 90.8 90.8 76.3 74.7 87.5 88.2 91.5
ewe 19k 3.2k 5.24 59.8 89.1 89.2 75.9 76.7 82.7 81.7 90.5
fon 36k 3.4k 29.81 32.3 66.1 66.1 55.0 54.8 59.3 59.2 69.1
fub 873k 49k 1.07 77.4 98.1 98.1 84.1 84.4 90.1 90.7 98.3
gaa 11k 2.0k 2.30 44.3 91.1 91.2 78.9 77.2 90.8 90.9 94.6
gba 9k 0.7k 1.58 89.6 97.8 97.8 92.2 92.1 95.3 95.0 97.7
guw 21k 2.3k 3.88 45.4 93.2 93.4 72.6 72.2 86.9 85.7 94.2
hau 472k 42k 0.83 93.5 97.5 97.7 95.0 94.4 96.9 96.6 97.6
her 9k 2.5k 0.06 95.5 98.7 98.7 95.5 95.5 97.2 96.9 98.8
ibo 31k 4.3k 7.48 54.7 88.6 89.5 75.0 75.8 81.7 81.3 89.5
igl 6k 1.2k 1.38 52.9 88.9 88.9 74.0 71.2 81.8 81.5 90.8
kam 19k 4.1k 1.46 48.5 89.0 89.0 79.7 78.4 88.2 88.5 94.0
kck 9k 1.5k 0.15 98.2 99.5 99.5 98.2 98.2 99.3 99.3 99.5
kik 85k 11k 2.17 49.4 93.8 93.8 75.9 76.4 87.2 86.8 95.5
kmb 11k 1.4k 2.27 90.5 96.9 96.9 90.5 90.5 92.9 92.4 96.8
kqn 23k 4.9k 0.40 97.2 98.7 98.7 97.2 97.2 97.5 97.2 98.7
lin 46k 102k 11.38 30.1 77.5 78.2 45.3 46.2 66.0 65.4 78.3
lol 1k 0.5k 0.19 74.0 89.9 89.9 74.8 74.8 77.8 77.8 89.4
loz 100k 9.4k 0.07 96.9 99.7 99.7 97.5 97.1 98.6 98.6 99.7
lua 64k 8.5k 0.82 97.5 98.6 98.7 97.5 97.5 97.3 97.4 98.5
lub 8k 1.9k 0.14 92.7 96.9 96.9 92.8 92.8 94.2 94.7 96.9
lun 7k 2.8k 0.09 87.6 93.7 93.7 93.9 92.0 96.7 96.4 98.0
mho 2k 1.1k 1.12 80.0 85.9 85.9 79.2 79.2 81.5 81.8 86.0
mos 51k 5.1k 3.30 54.3 93.4 93.4 78.6 76.6 89.1 89.4 93.9
nso 696k 35k 0.26 88.0 99.2 99.2 95.9 95.5 98.8 98.7 99.4
nya 22k 9.1k 0.32 94.9 97.0 97.2 94.9 94.9 96.0 95.7 97.2
nyk 7k 2.6k 0.07 96.4 99.6 99.6 96.4 96.4 96.7 96.9 99.7
plt 1293k 67k 1.22 93.9 97.6 97.6 93.9 93.9 91.7 93.6 97.5
sag 35k 2.2k 1.76 93.1 97.8 97.9 94.9 94.7 95.9 96.2 97.6
sba 9k 1.2k 4.34 76.2 91.8 92.0 77.8 77.8 82.6 83.6 92.3
seh 4k 1.3k 0.00 98.0 99.3 99.3 98.0 98.0 98.4 98.4 99.3
ses 28k 8.4k 1.54 89.6 96.2 96.3 93.6 90.6 93.8 93.9 96.3
tiv 36k 2.6k 3.57 93.1 96.0 96.3 94.1 94.0 95.6 95.5 96.1
tsn 171k 8.8k 0.03 98.0 98.2 98.2 99.2 99.2 99.7 99.7 98.2
tum 16k 4.1k 2.25 86.2 93.8 94.3 92.5 91.7 93.4 93.1 95.7
umb 35k 4.6k 0.42 95.0 99.1 99.1 95.2 95.2 97.1 97.1 99.0
urh 8k 1.4k 7.65 51.6 87.3 87.3 67.0 69.7 83.4 82.6 87.8
ven 136k 9.3k 0.52 89.8 97.8 97.8 94.0 93.5 97.6 97.6 97.7
vmw 7k 2.2k 1.47 90.5 95.5 95.5 90.4 90.4 92.6 92.8 95.6
wol 1238k 32k 3.27 82.1 95.8 97.1 86.1 85.6 91.9 93.0 97.1
yao 8k 2.8k 0.98 81.6 93.0 93.0 86.1 84.9 88.9 89.0 95.2
yor 5k 3.5k 11.73 17.9 75.2 75.2 48.4 42.7 61.9 61.6 75.2
zne 17k 2.4k 0.43 98.5 99.3 99.3 98.4 98.4 98.2 98.3 99.2



9

Table 2 Word level accuracy scores on plain text: Other languages

639 Train Lex LD1 BL LL LL2 FS1 FS2 FS3 FS4 CMB

afr 1052k 170k 0.44 98.6 99.4 99.6 98.7 98.8 96.7 98.1 99.3
als 993k 80k 4.26 63.9 94.3 94.5 79.1 79.7 89.3 88.8 94.7
azj 1358k 141k 0.95 31.7 93.4 93.6 62.9 61.3 85.0 83.7 95.6
bre 1150k 96k 0.51 89.2 97.1 97.1 94.1 93.9 94.2 95.1 97.2
cat 1236k 337k 1.17 83.4 96.2 96.8 88.0 88.3 89.0 90.6 96.6
ces 1098k 135k 3.71 51.8 95.3 96.4 60.5 59.5 80.4 80.7 96.1
cmn 78k 12k 9.83 7.9 81.7 81.8 44.6 44.9 65.2 64.5 83.7
csb 344k 44k 6.59 39.6 85.2 86.0 57.6 56.9 77.7 76.5 87.7
cym 1062k 383k 0.86 97.2 97.8 98.2 97.2 97.2 93.1 96.7 97.9
dan 1220k 423k 0.39 86.2 98.7 98.7 94.3 94.5 96.2 96.9 98.6
deu 2213k 423k 0.90 91.4 98.2 98.4 93.1 93.0 94.8 95.7 98.3
est 563k 115k 0.29 81.7 98.4 98.5 80.9 77.6 91.2 93.5 98.6
eus 1085k 145k 0.30 98.9 99.5 99.5 98.8 98.8 96.1 97.8 99.3
fao 1045k 147k 0.68 59.3 97.5 97.8 81.7 75.7 94.6 94.8 98.5
fin 758k 191k 0.22 77.4 97.0 97.0 77.9 81.4 85.4 84.9 96.5
fra 1593k 655k 1.78 84.0 98.0 99.5 85.4 84.7 88.5 92.5 99.5
fri 1181k 94k 0.68 92.9 98.5 98.7 95.4 95.5 95.0 96.0 98.5
fur 871k 420k 3.98 83.1 94.6 96.2 88.2 87.7 83.0 88.1 95.9
gle 1579k 463k 1.25 70.7 98.1 98.7 79.9 80.6 89.4 89.5 98.7
glg 1025k 571k 2.99 86.4 93.4 93.7 88.9 89.0 88.1 91.3 93.4
hat 1409k 35k 1.02 86.7 98.4 98.7 91.8 91.4 96.6 96.6 98.7
haw 35k 7.3k 3.02 64.6 96.0 96.5 83.7 83.6 91.6 91.6 96.2
hrv 895k 444k 0.26 84.1 98.6 98.6 89.5 89.4 94.9 95.3 98.8
hsb 348k 36k 1.43 64.7 96.6 96.9 76.4 77.2 88.2 88.6 96.9
hun 1579k 314k 2.64 53.0 94.9 95.3 60.4 60.8 80.7 81.4 95.6
isl 1422k 283k 1.14 49.8 95.2 95.3 80.8 79.3 92.9 92.9 95.7
ita 1275k 107k 1.47 95.1 97.7 98.1 93.8 93.0 93.2 94.3 97.9
kmr 1350k 113k 6.08 53.9 90.7 92.7 68.6 68.7 81.4 82.1 93.4
lav 1070k 372k 4.81 54.9 90.5 91.4 60.8 59.0 77.5 79.2 92.1
lit 800k 104k 3.64 65.0 94.7 96.0 65.8 59.8 80.6 82.3 95.9
mlt 402k 64k 0.91 76.2 97.6 97.6 93.1 93.1 96.2 96.7 98.3
mri 1185k 43k 3.01 76.6 96.5 97.6 85.5 83.0 91.5 92.6 97.5
nds 756k 63k 1.10 88.2 97.4 97.6 91.0 91.1 92.5 93.9 97.5
nld 1099k 278k 0.25 99.3 99.5 99.5 99.3 99.3 95.5 98.7 99.2
nno 1264k 334k 0.59 87.8 98.8 99.0 92.1 90.7 96.5 96.5 99.0
nob 929k 538k 0.45 87.1 98.9 99.0 92.8 90.5 96.5 96.7 99.0
pol 980k 121k 1.83 69.7 97.5 98.1 79.7 77.5 89.0 90.4 97.9
por 1163k 497k 2.32 83.5 97.0 97.9 89.1 89.7 86.2 91.1 97.7
quh 358k 61k 1.12 92.5 97.5 97.7 91.4 91.3 90.5 92.3 97.3
ron 1291k 132k 3.51 71.3 95.3 95.7 81.7 80.1 87.6 87.8 97.0
slk 1397k 159k 2.04 55.3 96.4 96.9 66.1 64.2 81.8 82.4 96.9
slv 1048k 110k 0.50 84.5 99.2 99.5 91.4 91.3 96.4 96.5 99.4
sme 719k 97k 2.34 62.5 91.5 92.0 67.6 67.6 84.8 83.8 92.0
smo 4k 1.1k 1.89 69.0 92.6 92.4 89.0 89.0 93.0 93.0 94.2
spa 902k 639k 1.31 89.2 97.8 98.0 90.7 90.2 92.3 93.6 97.6
src 692k 59k 1.10 92.2 96.9 97.0 92.6 92.6 91.4 93.3 96.7
swe 1119k 166k 1.05 75.8 97.1 97.9 79.4 77.0 90.3 91.5 98.0
tet 969k 50k 3.55 92.0 92.8 93.4 91.0 90.3 86.9 89.4 93.0
tuk 1390k 156k 7.72 62.2 87.4 87.7 71.9 71.3 81.5 81.3 88.3
tur 144k 113k 0.64 52.3 87.9 88.0 73.8 76.6 86.4 84.8 92.8
vie 3702k 39k 25.06 30.9 72.5 91.8 56.5 56.2 62.6 65.9 91.6
wln 1077k 169k 2.77 81.3 95.5 96.1 86.0 85.6 89.5 90.9 95.9



10

making this work much more accessible to language communities through his Firefox add-on,
and to my many collaborators on the Crúbadán project for their help preparing the web corpora
which were used to train the language models, especially Tunde Adegbola (Yoruba), Denis
Jacquerye (Lingala), Chinedu Uchechukwa (Igbo), Thapelo Otlogetswe (Setswana), Abdoul
Cisse and Mohomodou Houssouba (Songhay), and Outi Sané (Diola). Alexandru Szasz gave
helpful feedback on Romanian, as did Jean Came Poulard on Haitian Creole. Finally, thanks
to Guy De Pauw, Peter Wagacha, and Gilles-Maurice de Schryver for their encouragement of
this work.

This paper is dedicated to the memory of my friend and collaborator on Frisian, Eeltje de
Vries (1938–2008).

References

1. Meghan E. Caldwell, Development of psychometrically equivalent speech audiometry mate-
rials for testing children in Mongolian, M.S. Thesis, Brigham Young University, December
2009.

2. Guy De Pauw, Peter W. Wagacha, and Gilles-Maurice de Schryver, Automatic diacritic
restoration for resource-scarce languages, In: V. Matousek and P. Mautner, eds., Proceedings
of Text, Speech and Dialogue Conference 2007, 170–179 (2007).

3. Guy De Pauw, Peter W. Wagacha, and Gilles-Maurice de Schryver, Collection and deploy-
ment of a parallel corpus English-Swahili, Language Resources and Evaluation, this volume
(2011).

4. Cédrick Fairon et al, eds., Building and Exploring Web Corpora, Proceedings of the 3rd
Web as Corpus Workshop, Louvain-la-Neuve, Belgium (2007).

5. Valarie N. Haslam, Psychometrically equivalent monosyllabic words for word recognition
testing in Mongolian, M.S. Thesis, Brigham Young University, August 2009.

6. Adrian Iftene and Diana Trandabăt,, Recovering diacritics using Wikipedia and Google, In:
Knowledge Engineering: Principles and Techniques, Proceedings of the International Con-
ference on Knowledge Engineering KEPT2009, 37–40 (2009).

7. Rada Mihalcea, Diacritics Restoration: Learning from Letters versus Learning from Words,
In: Proceedings of the Third International Conference on Intelligent Text Processing and
Computational Linguistics (2002).

8. Rada Mihalcea and Vivi Nastase, Letter Level Learning for Language Independent Diacrit-
ics Restoration, In: Proceedings of CoNLL-2002, 105–111 (2002).

9. Steven Moran, An Ontology for Accessing Transcription Systems, Language Resources and
Evaluation, this volume (2011).

10. Kevin P. Scannell, The Crúbadán Project: Corpus building for under-resourced languages,
In: Building and Exploring Web Corpora, Proceedings of the 3rd Web as Corpus Workshop,
5–15 (2007).

11. Michel Simard, Automatic Insertion of Accents in French Text, In: Ide and Vuotilainen,
eds., Proceedings of the Third Conference on Empirical Methods in Natural Language Pro-
cessing, 27–35 (1998).

12. Michel Simard and A. Deslauriers, Real-time automatic insertion of accents in French
text, Natural Language Engineering, 7:2, 143–165 (2001).

13. Thierry Spriet and Marc El-Bèze, Réaccentuation Automatique de Textes, In: FRACTAL
97, Besançon, (1997).

14. Oliver Streiter and Mathias Stuflesser, Design Features for the Collection and Distribution
of Basic NLP-Resources for the World’s Writing Systems, In: Proceedings of LREC 2006,
Genova, Italy (2006).

15. Dan Tufis, and Adrian Chit,u, Automatic Diacritics Insertion in Romanian Texts, In:
Proceedings of the 5th International Workshop on Computational Lexicography COMPLEX
’99, 185–194 (1999).

16. Dan Tufis, and Alexandru Ceaus,u, DIAC+: A Professional Diacritics Recovering System,
In: Proceedings of the Sixth International Language Resources and Evaluation (LREC’08),
(2008).

17. Peter W. Wagacha, Guy De Pauw, and Pauline W. Githinji, A Grapheme-Based Approach
for Accent Restoration in Gı̃kũyũ, In: Proceedings of LREC’06, 1937–1940 (2006).

18. David Yarowsky, A Comparison of Corpus-Based Techniques for Restoring Accents in
Spanish and French Text, In: Proceedings of the 2nd Annual Workshop on Very Large Text
Corpora, 99–120 (1994).


