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Abstract
The Celtic languages share a common linguistic phenomenon known as initial mutations; these consist of pronunciation and spelling
changes that occur at the beginning of some words, triggered in certain semantic or syntactic contexts. Initial mutations occur quite
frequently and all non-trivial NLP systems for the Celtic languages must learn to handle them properly. In this paper we describe and
evaluate neural network models for predicting mutations in two of the six Celtic languages: Irish and Scottish Gaelic. We also discuss
applications of these models to grammatical error detection and language modeling.
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1. Introduction
The Insular Celtic language family consists of two
branches, the Goidelic (or Q-Celtic) branch, comprised of
Irish, Manx, and Scottish Gaelic, and the Brythonic (or P-
Celtic) branch, comprised of Welsh, Breton, and Cornish.
All six languages are under-resourced in terms of language
technology, although substantial progress has been made in
recent years, especially for Irish and Welsh (Judge et al.,
2012; Evas, 2013).
The Celtic languages share a linguistic phenomenon known
as initial mutations. These are pronunciation and spelling
changes that occur at the beginning of certain words based
on the grammatical context. For example, the Irish word
bád (‘a boat’) undergoes an initial mutation known as leni-
tion when preceded by the first person singular possessive
adjective mo, hence mo bhád (‘my boat’). Each Celtic lan-
guage has multiple mutation types, each one governed by
sometimes-complicated rules that can be challenging for
learners and native speakers alike. Initial mutations are
quite common (occurring, for example, in about 15% of to-
kens in typical Irish corpora), and so all NLP technologies
for the Celtic languages must handle them correctly.
Our goal in this paper is to describe and evaluate several
neural network models for predicting Celtic mutations. We
restrict ourselves to Irish and Scottish Gaelic for reasons we
will make clear in §2.2 below.
We have two primary applications in mind for this work.
First, mutation errors are among the most common made
by learners of the Celtic languages, and a sufficiently ac-
curate predictive model can be used as part of a system
for detecting and correcting grammatical errors. We ad-
dress this application in §4.1. The second application is
to language modeling, the idea being to separately predict
the probability of a demutated token given its history fol-
lowed by the probability of a given mutation on that token.
We show in §4.2 that the resulting factored language model
(Bilmes and Kirchhoff, 2003) yields a decrease in perplex-
ity over a baseline 5-gram model. This language model can
in turn be incorporated into end-user technologies like ma-
chine translation engines, reducing the number of mutation
errors output by such systems.

The current research landscape in NLP is dominated by
work on English, and algorithms or architectures that give
state-of-the-art results on English are often applied without
modification to other languages. We hope that the results
of this paper show that one can improve upon language-
independent approaches by incorporating linguistic knowl-
edge specific to a given language or language family.
The outline of the remainder of the paper is as follows.
We begin in §2 with an overview of the initial mutations
that occur in Irish and Scottish Gaelic, and we explore the
information-theoretic content of the mutation system. In
§3 we define and evaluate our neural network models for
predicting mutations. The final section §4 discusses the ap-
plications of these models to Irish grammar checking and
language modeling.

2. Celtic Initial Mutations
2.1. Definitions and Examples
We begin with descriptions of the initial mutations that
occur in Irish and Scottish Gaelic: lenition, t-prothesis,
h-prothesis, and eclipsis.

• Lenition is a “softening” of the initial consonants b,
c, d, f, g, m, p, s, and t, that occurs in both languages
in certain contexts. It is indicated in the modern or-
thographies by the insertion of an h after the initial
consonant. For example, adjectives following a femi-
nine noun are lenited: beag (‘small’), but bean bheag
(‘small woman’). (This example works in both lan-
guages).

• T-prothesis. In both languages a t- is prefixed to a
masculine noun beginning with a vowel in the nomi-
native singular when preceded by the definite article.
There is a similar (but distinct) phenomenon triggered
by the definite article that occurs for some nouns be-
ginning with s. This is represented as a prefixed t-
in Scottish Gaelic orthography, so slat (‘a stick’) be-
comes an t-slat (‘the stick’), but is written without the
hyphen in Irish (an tslat). For the purposes of our
models these are treated as a single type of mutation.



• H-prothesis. An h (modern Irish) or h- (Scottish
Gaelic and older Irish orthographies) is prefixed to
some words having an initial vowel, e.g. nouns pre-
ceded by the third person feminine possessive ad-
jective a (‘her’), hence aisling (‘dream’) becomes
a haisling (‘her dream’, Irish), or a h-aisling (Scottish
Gaelic).

• Eclipsis. Roughly speaking, eclipsis causes voiceless
stops to become voiced and voiced stops to become
nasal. The full set of orthographic changes is given in
the following section as part of Algorithm 1. Eclip-
sis occurs in both languages but is usually not real-
ized orthographically as an initial mutation in Scot-
tish Gaelic. One example that does occur in both lan-
guages is eclipsis of an initial vowel after the first per-
son plural possessive adjective, so athair (‘father’) be-
comes ár n-athair (‘our father’, Irish) and ar n-athair
(Scottish Gaelic).

We define a set of labelsM = {L,T,H,E,N} where L,
T, H, and E correspond to the four mutations above, and
the label N is used for tokens having no mutation.
There are dozens of rules governing exactly when each mu-
tation occurs, and we make no attempt to cover them all
here, instead referring the interested reader to (Tithe an
Oireachtais, 2016) and (Bauer, 2011) for Irish and Scottish
Gaelic respectively. The rules can be quite challenging for
language learners, and there is even significant variation in
how the mutations are used among native speakers, based
primarily on dialect.
A rule-based system for predicting Irish mutations has been
implemented in previous work of the author.1 But this
approach relies at minimum on a rich lexicon and accu-
rate part-of-speech tagging, and fails to implement certain
rules that would require deeper syntactic or semantic anal-
ysis. The resulting system suffers from the brittleness that
plagues many rule-based NLP systems. The pure machine
learning approach we propose in this paper aims to over-
come these shortcomings.

2.2. Orthographic Transparency and
Demutation

All of the initial mutations in Scottish Gaelic are ortho-
graphically transparent, by which we mean that they can be
trivially and algorithmically removed whenever they occur.
With a single exception that we will describe momentarily,
the same is true for Irish. This means that we can produce
unlimited amounts of training data labeled with the correct
mutations for either language, starting from plain text cor-
pora. This is in contrast with the other four Celtic languages
where mutations are generally not algorithmically remov-
able,2 and so the approach of this paper does not apply di-
rectly to Manx Gaelic, Cornish, Breton, or Welsh.
For Irish, lenition, eclipsis, and t-prothesis can be removed
algorithmically, but h-prothesis cannot be, because, unlike

1See https://cadhan.com/gramadoir/.
2Consider for example the surface form vea in Manx Gaelic,

which can be a lenited form of the noun bea (‘life’) as in my vea
(‘my life’), or else an eclipsed form of fea (‘quiet, rest’) as in
gow-jee nyn vea (‘take your (pl.) rest’, cf. Matthew 14:41).

Scottish Gaelic, it is written without a hyphen in the stan-
dard orthography. Therefore, without making use of a com-
prehensive lexicon one cannot be certain if a given initial h
represents h-prothesis or if it is instead an integral part of
the word, e.g. hidrigin (‘hydrogen’). Even a dictionary-
based approached is doomed because of ambiguities like
aiste (‘an essay’) vs. haiste (‘a hatch’), and because of
new or non-standard words that will always be missing
from a dictionary. Instead, we will take a brute force ap-
proach and define every initial h in Irish to be an example
of h-prothesis.
Let V be the set of legal tokens. In our experiments we will
assume all tokens have been lowercased which simplifies
the model and the rules below. The goal of Algorithm 1 is
to define two functions; the first σ : V → V strips mutations
and the second µ : V → M maps a token to its mutation
label.

Algorithm 1. Given a token w, this algorithm returns the
demutated token σ(w) and the mutation label µ(w) ∈M.

1. If a token w begins with bhf, set µ(w) = E, and re-
move the bh to obtain σ(w).

2. Otherwise, if the second letter of a token w is an h, set
µ(w) = L, and remove the h to obtain σ(w).

3. Otherwise, if a token w begins with h-, set µ(w) = H,
and remove the h- to obtain σ(w).

4. (Irish only) Otherwise, if a token w begins with h, set
µ(w) = H, and remove the h to obtain σ(w).

5. Otherwise, if a token w begins with t-, set µ(w) = T,
and remove the t- to obtain σ(w).

6. Otherwise, if a token w begins with ts, set µ(w) = T,
and remove the initial t to obtain σ(w).

7. Otherwise, if a token w begins with n-, set µ(w) = E,
and remove the n- to obtain σ(w).

8. (Irish only) Otherwise, if a token w begins with mb,
gc, nd, ng, bp, or dt, set µ(w) = E, and remove the
first letter to obtain σ(w).

9. Otherwise, set µ(w) = N and σ(w) = w.

Note that we have defined slightly different functions for
the two languages, but in what follows we will abuse nota-
tion and write them simply as σ and µ, understanding that
the additional rules for Irish will be applied only in the Irish
experiments.
Since we are trying to explore the learnability of the muta-
tion system from raw text, it is important to note that neither
function definition encodes any information about the lex-
icon or the grammatical context in which these mutations
occur; they are simply defined in terms of the orthographic
changes in question. In the case of lenition, for example,
we do not even encode the knowledge that lenition only ap-
plies to consonants. This means that σ and µ sometimes
do the “wrong thing” linguistically, as in the case of Irish
h-prothesis noted above (σ(hidrigin) = idrigin), or when
applied to English words embedded in otherwise Gaelic

https://cadhan.com/gramadoir/


texts, e.g σ(Chaucer) = Caucer or µ(tsunami) = T.
There are also more subtle cases one could quibble over,
for example lenited Irish words like cheana or chugat for
which the unlenited form does not exist in the lexicon.
Again, all of this is fine for our purposes: we have simply
defined a task in which our labels differ in rare cases from
the linguistically-correct ones. In theory, this complicates
the learning process since examples like these can occur in
contexts where one would not expect to see the correspond-
ing mutation. But as we will see in the sections that fol-
low, there was no practical impact on the neural networks
we trained; they simply learned to predict, for example, a
(very) high probability for the label H given a “demutated”
token like idrigin, or for the label L given examples like
ceana, cugat, or Caucer.

2.3. Mutations as Low-Entropy Features
Celtic mutations carry very little information. Informally
speaking, if one were to remove all of the mutations from a
text, a native speaker would be able to restore almost all of
them correctly and unambiguously. One of our goals in this
section is to make this notion more precise, and assign a nu-
merical value (in units of bits per token) to the information
content of initial mutations.
We will write P for a model that produces the probabil-
ity of a mutation given the demutated target word and pre-
ceding context. More precisely, let w1, . . . , wN be a se-
quence of tokens, and let m ∈ M. For k ∈ {1, . . . , N},
we write P (m|σ(w1) . . . σ(wk)) for the probability that
µ(wk) = m given the demutated token σ(wk) and the his-
tory σ(w1) . . . σ(wk−1). Conditioning our predictions on
demutated words to the left of the target word will allow us
to incorporate P into a full language model; see §4.2. for
details.
We write the average log loss Λ of this model as

Λ = − 1

N

N∑
i=1

log2 P (µ(wi)|σ(w1) . . . σ(wi)) (1)

with units of bits per token. This gives an estimate of the
information content of initial mutations based on the given
model P and test corpus w1, . . . , wN .
Our claim is that Celtic mutations are “low-entropy” lin-
guistic features, by which we mean that the quantity Λ
will be close to zero given a sufficiently accurate model
P . We will demonstrate this experimentally in the next sec-
tion. This claim will come as no surprise to readers familiar
with the rules for Irish and Scottish Gaelic initial mutations,
since the mutations are often completely determined by the
surrounding context, often the previous one or two words
along with the initial letter of the target word.
There are, however, some well-known exceptions where
mutations appear to carry important information. One ex-
ample is the Irish third person possessive a which can mean
“his”, “her”, or “their”, with the correct sense sometimes
being determined by the mutation on the possessed noun:
a bád (‘her boat’, no mutation), a bhád (‘his boat’, lenited),
a mbád (‘their boat’, eclipsed). Of course in many cases
the correct sense can also be reliably guessed from the sur-
rounding context (necessarily so in cases where the pos-

sessed noun does not admit an initial mutation), but some-
times this is challenging, especially for sentences in isola-
tion, and the mutation does convey non-trivial information.
Another well-known example is a difference in mutations
that occurs between Irish dialects in the dative case. In the
Ulster dialect, speakers usually lenite a noun in the dative,
e.g. ar an bhád (‘on the boat’), while in the other major
dialects the noun is eclipsed (ar an mbád) and so the mu-
tation conveys information about the dialect of the speaker
or writer. We will return to the question of which mutations
carry the most information in a data-driven way in §3.3.

3. Neural Networks for Mutation Prediction
3.1. Design and Implementation
The goal of this section is to define a number of models
which predict probabilities of initial mutations. All mod-
els are evaluated according to their (base 2) log loss Λ as
defined in Equation 1 above. Because we plan to incor-
porate these into full language models, it is important that
the predictions be conditioned only on the demutated target
word and any preceding words. See §4.2 below for further
details.
Because five-fold classification problems evaluated via log
loss are not particularly common in the literature, we will
define and evaluate a few very simple baselines to help
frame the problem. For each model, we assume we have
seen a history of demutated tokens σ(w1) . . . σ(wk) and
want to predict the probability that mutation m ∈ M oc-
curs on wk. We denote the tokens in the training corpus by
t1 . . . tN .

• Label priors. The unmutated label N is by far the
most common, so we do reasonably well by simply
assigning to every token the prior probability of m as
seen in training:

P (m|σ(w1) . . . σ(wk)) =
1

N

∑
µ(ti)=m

1

• First letter. Certain initial letters are incompatible
with certain mutations. We take this into account
in this baseline by assigning the maximal likelihood
probability of m as estimated from training tokens ti
such that σ(ti) and σ(wk) have the same first charac-
ter.

• Unigram model. This baseline assigns the probability

P (m|σ(w1) . . . σ(wk)) =

∑
µ(ti)=m,σ(ti)=σ(wk)

1∑
σ(ti)=σ(wk)

1
,

but smoothed using add-α smoothing with the param-
eter α tuned on the development set.

• Trigram model. This model is analogous to the
unigram but computes the maximal likelihood esti-
mate of m based on trigrams (ti−2, ti−1, ti) seen
in training such that (σ(ti−2), σ(ti−1), σ(ti)) =
(σ(wk−2), σ(wk−1), σ(wk)). In case of zero counts,
we back off to a bigram estimate, and then to the uni-
gram model above.



The trigram model gives a reasonably strong baseline,
which is not surprising given the fact that mutations can
often be predicted from the previous word or two. Im-
proving the trigram to be competitive with our best neural
models would require a more sophisticated backoff strategy
along the lines of the generalized parallel backoff proposed
in (Bilmes and Kirchhoff, 2003), and perhaps incorporating
some linguistic knowledge. To see this, consider a preposi-
tional phrase like the Irish ar an mbád (‘on the boat’) with
eclipsis on the noun bád (‘boat’). Were this trigram not
seen in training, a naive backoff strategy would estimate
the probability of eclipsis by backing off to the bigram an
bád, and for this and most other nouns the counts would be
dominated by nominative examples where eclipsis is highly
unlikely.3

Next we will describe our three neural network models, be-
ginning with definitions of the layers that are used in more
than one model.
All three models use character embeddings; for this, we
fixed a vocabulary C consisting of the most common 32
characters seen in training, and the models learn an em-
bedding χ : C → R10.
The second and third models make use of a trainable token
embedding layer. Here we fix a “demutated vocabulary”
Vσ consisting of the 100,000 most common tokens in train-
ing after removing mutations, and then this layer learns a
mapping ψ : Vσ → R200.
The latter two models also make use of a character-
level bidirectional LSTM (Graves and Schmidhuber, 2005)
which provides a second embedding of each input token as
a fixed-length vector, in this case one that hopefully cap-
tures internal orthographic or morphological features rele-
vant to the mutation system. The character embedding χ
is used to convert the characters in a demutated token into
a sequence of vectors in R10 which is in turn input into
a BiLSTM layer with 75 cells in each direction. The two
unidirectional outputs are concatenated, defining a mapping
β : Vσ → R150.
The top two (output) layers are the same across all three
models: first, a dense layer with 100 cells and reLU activa-
tion, followed by a softmax layer that outputs a probability
distribution over the set of five labelsM.
With this notation established, we define our three neural
networks as follows:

• Character LSTM. In this model, we rejoin the full
token history σ(w1), . . . , σ(wk) into one long string
separated by spaces, and then extract the final 20 char-
acters of the resulting string. The character embedding
χ is then applied to produce a sequence of 20 vectors
in R10 which are passed into an LSTM with 150 cells
and recurrent dropout of 0.4. The final state vector
output by the LSTM is fed into the dense and softmax
output layers where the loss is computed.

• Trigram and character BiLSTM. Since mutations
are usually triggered by one or two preceding words,

3We conjecture that this is the cause of many of the mutation
errors seen in the output of machine translation engines that use
n-gram language models.

we wanted to define a strong baseline that only consid-
ers the target token σ(wk) (for which we are predicting
the mutation) and the two previous tokens σ(wk−2)
and σ(wk−1). For i ∈ {0, 1, 2} we embed σ(wk−i) by
concatenating the token embedding ψ(σ(wk−i)) and
the BiLSTM embedding β(σ(wk−i)). The three re-
sulting vectors are concatenated and fed directly into
the dense and softmax output layers.

• Token LSTM and character BiLSTM. The idea here
is to use an LSTM to encode a longer token his-
tory as a fixed-length vector, hopefully enabling the
model to make better predictions in subtle cases (e.g.
words preceded by third person possessive adjectives
where anaphora resolution is needed). We fix a win-
dow size of L tokens. For i ∈ {0, . . . , L − 1}
we again embed σ(wk−i) by concatenating the to-
ken embedding ψ(σ(wk−i)) and the BiLSTM embed-
ding β(σ(wk−i)). The resulting sequence of L vectors
is input into an LSTM with 500 cells and recurrent
dropout of 0.25. The final state vector output by the
LSTM is fed into the dense and softmax output layers;
see Figure 1.

Figure 1: Architecture of the Token LSTM and character
BiLSTM model

3.2. Training and Evaluation
The training, development, and test corpora for both lan-
guages were assembled by crawling the web (Scannell,
2007). The corpora are sentence-shuffled,4 tokenized, and
then lowercased.
It is important to take note of a subtlety when lowercas-
ing Irish and Scottish Gaelic that involves initial muta-
tions. When t-prothesis or eclipsis occurs with a capi-
talized vowel-initial word in Irish, the prefixed letter is
written without a hyphen, e.g. ár nAthair (‘our Father’).

4By shuffling sentences, we greatly increase the size of the
corpora that can be freely distributed, with the tradeoff that it be-
comes impossible for the model to learn contextual clues across
sentences, as is sometimes required for correct prediction.



Therefore, when lowercasing, the hyphen must be rein-
serted: ár n-athair and not ár nathair which would mean
something completely different (‘our snake’). We do
the same thing when lowercasing Scottish Gaelic as well
(where the hyphen is sometimes omitted), and addition-
ally for h-prothesis, so Pàrlamaid na hAlba lowercases to
pàrlamaid na h-alba.
The Scottish Gaelic training corpus contains 8 million to-
kens, and the development and test sets have 500k tokens
each. There is substantially more Irish than Scottish Gaelic
available online and so the corpora are much bigger: 50
million tokens of Irish for training, and 1 million tokens
each for development and testing.
In performing error analysis on the Irish model (see §3.3),
it became clear that a significant portion of the loss exhib-
ited by our models came from grammatical errors in the test
corpus rather than flaws in the model. For this reason, we
created a second test set from a corpus of well-edited arti-
cles from the online Irish news service Tuairisc.ie. The full
corpus consists of about 7.7 million tokens from which we
extracted a 1 million token test set, disjoint from the train-
ing corpus, which was shuffled, tokenized, and lowercased
as above.
The neural network models were implemented in Tensor-
Flow (Abadi et al., 2016) and each was trained for 20
epochs, checkpointing and saving the models with smallest
loss on the development set. The test losses for all mod-
els are reported in Table 1 in units of bits per token, and
columns are labeled with ISO 639-1 language codes (“ga”
for Irish and “gd” for Scottish Gaelic).5

Model Test (ga) Clean (ga) Test (gd)
Label priors 0.75917 0.79581 0.66670
First letter 0.52064 0.54242 0.40187
Unigram model 0.40571 0.39485 0.31835
Trigram model 0.10710 0.07995 0.10205
Char LSTM 0.10336 0.08531 0.08598
3-gram+BiLSTM 0.08051 0.05949 0.07662
LSTM+BiLSTM 0.06949 0.04719 0.07222

Table 1: Test loss in bits per token for best-performing
models

3.3. Error Analysis
We performed an error analysis by applying the best neural
network model to a 10000-token subset of the Irish devel-
opment set. The total loss in bits per token over this subset
was 0.07254, slightly larger than the test loss of 0.06949.
The ground truth label was assigned a probability of at least
0.5 for 9833 of the 10000 tokens. In many cases we see that
the model has successfully generalized to forms not seen di-
rectly in training. For example, no form of the word ubhal
(a pre-standard spelling of úll ‘apple’) was seen in training,
but the model correctly predicts t-prothesis for an t-ubhal
(‘the apple’) in the development set. Similarly, the model

5N.B. TensorFlow uses natural logs, and so the losses shown
in training are smaller by a factor of ln(2) than those reported in
Table 1.

correctly predicts lenition on the conditional verb mhaoin-
feadh (‘would fund’) despite not having seen this word in
training, presumably based on other conditional verbs end-
ing in feadh.
The remaining 167 tokens (for which the predicted proba-
bility of the ground truth label was less than 0.5) account for
the great majority (77.24%) of the total loss; we manually
examined and classified these tokens into ad hoc categories
as reported in Table 2.

Classification Count Loss (bpt) % Loss
Error in dev set 61 4.25447 35.78
Right-context needed 30 2.95675 12.23
Non-standard form 23 3.30608 10.48
Possessive a, ina, . . . 16 2.73679 6.04
Dialect in dative 9 3.18118 3.95
Non-Irish words 7 3.55753 3.43
Others P < 0.5 21 1.84388 5.34
All P ≥ 0.5 9833 0.01651 22.76

TOTAL 10000 0.07254 100.00

Table 2: Breakdown of the total loss on a 10000 token sub-
set of the Irish development set

The greatest part of the loss was contributed by grammat-
ical errors in the development set. In fact, the five tokens
with the smallest predicted probability for the ground truth
label all correspond to obvious errors. This provides evi-
dence of the usefulness of our model for grammatical error
detection and correction, which we report on below in §4.1.
Quite a few of the bad predictions stem from our self-
imposed restriction that the model only use context to the
left. A fluent speaker (and, most likely, a sufficiently strong
neural network model) could predict most of these muta-
tions given context on both sides, while failing to do so
given only the left context. We can therefore view these
particular mutations as conveying information about what
comes next in the sentence. Common examples of this type
include:

• confusion between imperative (unlenited) and past
tense (lenited) verbs at the beginning of a sentence;

• the words dá (‘if’) and dhá (‘two’);

• the preposition idir in the sense ‘both’ (lenition) vs.
‘between’ (no mutation); and

• the direct vs. indirect relativizing particles, both writ-
ten as a, but distinguished in part by lenition or eclipsis
of the following verb.

These and all similar examples are classified as “Right-
context needed” in the table.
In our analysis we distinguished true errors from examples
that are correct but that do not follow the Official Standard
for Irish; the latter are labeled “Non-standard forms” in Ta-
ble 2. An example would be lenition of the prepositional
pronouns dom, duit, etc., which is common in the spoken
language for certain dialects, but is not part of the official
orthography.



The next two rows in Table 2 correspond to the mutations
noted in §2.3 as (sometimes) carrying information; namely,
the possessive a along with its various forms fused with
prepositions (ina, faoina, dá, etc.), and the choice of leni-
tion or eclipsis on nouns in the dative case based on dialect
(both choices being permitted in the Official Standard).
The final class consists of non-Irish (mostly English) words
which do not follow Irish spelling conventions and there-
fore confuse the model.

3.4. Model Introspection
The two best neural network models learn 200-dimensional
embeddings for all tokens in the vocabulary. By visualizing
these embeddings we can verify that the model is learning
various linguistic properties that we know a priori to be
important in the mutation system.
For example, Figure 2 is a two-dimensional projection of
the embedding space (using tSNE) in which we have plot-
ted 7242 Irish nouns (nominative forms only) according to
their gender: blue dots are feminine and red dots are mas-
culine. At the most basic level, it is encouraging that words
of each gender tend to cluster together since gender plays a
key role in determining the correct mutation on nouns and
on the adjectives that modify them.
Interestingly, the visualization reveals additional regulari-
ties that the model learns at the character level. For exam-
ple, there are subclusters visible within each gender; these
are made up of words whose initial letters behave similarly
with respect to mutations. Words with initial vowels form
a tight subcluster within each gender, for example, as do
nouns with initial l, n, r, sc, sm, or sp (none of which mu-
tate). Similarly, there are subclusters of nouns with initial
b, c, f, g, p (consonants that admit lenition and eclipsis in
the same contexts), and another consisting of nouns with
initial d or t (which also admit lenition and eclipsis, but not
following certain words like the definite article an).

4. Applications
4.1. Grammar Checking
In this section we evaluate the ability of the best-performing
model to detect grammatical errors in Irish.
There is an active community of Irish speakers on Twit-
ter, with more than 3.3 million Irish language tweets posted
through the end of October 2019.6 The informal nature of
social media combined with the presence of many language
learners makes Twitter an excellent resource for creating a
corpus of grammatical errors. To this end, we examined a
random sample of about 80,000 Irish language tweets for
mutation errors, and from these selected a gold-standard
corpus of 895 tweets containing 1029 mutation errors.7 The
tweets were lowercased and tokenized in the same way as
our training corpora in §3, yielding 14406 tokens. Tokens
beginning with @ (representing Twitter usernames) were

6See http://indigenoustweets.com/ga/.
7Available from https://github.com/kscanne/

gramadoir/blob/master/ga/corpas.json. Muta-
tions that are acceptable in at least one dialect were not included
in the error corpus, despite not conforming to the Official
Standard in some cases.

Figure 2: 2D projection of word vectors for 7242 Irish
nouns in their nominative form; blue are feminine and red
are masculine.

preserved, but were all converted to a single token (@twit-
ter) as a way of partially anonymizing the corpus. We did
not correct any of the errors, but simply flagged all tokens
for which we believe the “ground truth” mutation label to
be an error.
Then, for various probability cutoff values 0 < C < 1, we
apply the LSTM+BiLSTM model to the corpus and instruct
the model to report an error any time it assigns a probability
less than C to the ground truth label. The precision, recall,
and F-scores for detecting mutation errors are given in Ta-
ble 3 at cutoff increments of 0.1, and plotted as a precision-
recall curve at increments of 0.05 in Figure 3.

P < C Precision Recall F -score
0.1 0.93 0.66 0.771
0.2 0.91 0.80 0.853
0.3 0.90 0.87 0.885
0.4 0.87 0.90 0.887
0.5 0.85 0.93 0.889
0.6 0.82 0.94 0.880
0.7 0.80 0.96 0.868
0.8 0.75 0.96 0.844
0.9 0.66 0.97 0.781

Table 3: Precision, recall, and F-scores for mutation error
detection at given probability cutoffs

The lowest cutoff used in our experiments was probability
C=0.05, and in this case there were 38 false positives re-
ported. For many of these, the model was led astray by in-
formal language found in tweets that is not well-represented
in our training corpora. For example, 10 of the 38 false pos-
itives are exclamations written according to English con-

http://indigenoustweets.com/ga/
https://github.com/kscanne/gramadoir/blob/master/ga/corpas.json
https://github.com/kscanne/gramadoir/blob/master/ga/corpas.json


Figure 3: Precision/Recall curve for error detection

ventions (ah, hi, oh, ha), and several others are caused
by misspellings that distorted a word enough to confuse
the model, e.g. bhanada for bhanda (‘band’, lenited) or
Ghàidlig for Ghàidhlig (the autonym for Scottish Gaelic,
lenited).
We remind the reader again that our neural network makes
its predictions based only on the left context, whereas a
typical batch-style grammar checking application would be
able to make use of both left and right context. Therefore it
is likely that a model tailored to this particular application
could improve upon the results in this section.

4.2. Language Modeling
Given a vocabulary V of tokens, a language model assigns a
probability P (v1 . . . vN ) to any sequence v1, . . . , vN ∈ V .
These are usually computed as a product of token probabil-
ities conditioned on their histories:

P (v1 . . . vN ) =

N∏
i=1

P (vi|v1 . . . vi−1) (2)

Given a test corpus T = w1 . . . wN , a language model can
be evaluated using the per-token cross entropy h(P,T) (cf.
Equation 1):

h(P,T) = − 1

N

N∑
i=1

log2 P (wi|w1 . . . wi−1), (3)

or, more commonly, the perplexity:

PPL = 2h(P,T) =

[
N∏
i=1

P (wi|w1 . . . wi−1)

]− 1
N

(4)

This paper arose, more or less, from the following sim-
ple observation. A 5-gram language model with modified
Kneser-Ney smoothing (Chen and Goodman, 1999) trained

on demutated Irish text gives a better than 6% improvement
in perplexity over the same model trained on raw text, “for
free”. That we see some improvement should come as no
surprise since demutation allows the model to learn gener-
alizations across words in the training set that would oth-
erwise differ; e.g. an important collocation like bád seoil
can be learned or strengthened even from mutated training
examples like mo bhád seoil (‘my sailboat’, lenited) or ár
mbád seoil (‘our sailboat’, eclipsed).
The idea then is that a sufficiently accurate model for pre-
dicting mutations allows us to realize most of this 6% im-
provement in a language model on the original corpus,
without demutation. We achieve this by means of a fac-
tored language model, following (Bilmes and Kirchhoff,
2003). In our setup, we would like to model each surface
tokenw as a pair of features, its unmutated form f1 = σ(w)
and its mutation f2 = µ(w). Given a sequence of tokens
w1 . . . wk, we factor the probability P (wk|w1 . . . wk−1) as
follows:

P (wk|w1 . . . wk−1) = P (σ(wk)|w1 . . . wk−1)·
P (µ(wk)|w1 . . . wk−1σ(wk))

≈ P (σ(wk)|σ(w1) . . . σ(wk−1))·
P (µ(wk)|σ(w1) . . . σ(wk))

The first factor here is simply a language model trained on
demutated text, while the second term is a mutation model
of exactly the type developed in §3.
We experiment only on Irish, making use of the clean Tu-
airisc.ie corpus described in §3.2 upon which the mutation
model works the best. We hold out development and test
sets containing 750k tokens each, and use the remaining
6.2M tokens for training. The n-gram models were trained
and evaluated with the MITLM toolkit (Hsu and Glass,
2008) using modified Kneser-Ney smoothing. We used the
full training vocabulary (95905 tokens in the base corpus
and 75902 in the demutated corpus) and tuned parameters
to minimize perplexity on the development set. The results
are presented in Table 4.

Model PPL (dev) PPL (test)
KN 5-grams (raw) 75.04 74.10
KN 5-grams (demutated) 70.28 69.53
Factored LM 72.81 72.03

Table 4: Perplexities of Irish language models

The drop in perplexity from 74.10 for the baseline model
to 69.53 for the demutated model is the roughly 6% im-
provement noted above, occurring presumably because the
latter model is able to learn generalizations across words
differing only in mutations. The perplexity of 72.03 for the
factored language model shows that an accurate model for
mutation prediction allows a good chunk of this improve-
ment to be realized in a language model on the original cor-
pus. With further improvements to the mutation prediction
model, we would expect the perplexity of the factored lan-
guage model to move even closer to the perplexity of the
demutated model.



There is nothing special about the 5-gram language model
as far as the formal setup; it is possible to similarly fac-
tor out initial mutations with state-of-the-art neural lan-
guage models. It remains to be seen whether a comparable
perplexity improvement is achievable in that case, since a
character-aware neural model may be able to learn to pre-
dict initial mutations effectively despite not being explicitly
trained to do so. We will return to this question in forth-
coming work in which we evaluate a wide variety of neural
language models for the Celtic languages.
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very, Teresa Lynn, and Michael Goldwasser for their help
and encouragement during the Fulbright application pro-
cess.

6. Bibliographical References
Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A.,

Dean, J., Devin, M., Ghemawat, S., Irving, G., Isard,
M., et al. (2016). TensorFlow: A system for large-scale
machine learning. In 12th USENIX Symposium on Op-
erating Systems Design and Implementation (OSDI ’16),
pages 265–283.

Bauer, M. (2011). Blas na Gàidhlig: The Practical Guide
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