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Statement of Main Result

We will be considering spacetimes homeomorphic to
M3×R where M3 is a compact, connected, topological
3-manifold without boundary. The slices M3×{t} will
always be spacelike.

A fundamental question is to determine the possible
topologies of the universe after imposing various (usu-
ally strong) conditions on the spacetime metric. Only
in the last few years has 3-manifold topology advanced
enough provide answers to this question in certain
cases:

Main Theorem. M is a spacelike slice of a flat space-
time if and only if M is hyperbolic (admits a Rieman-
nian metric of constant curvature −1) or M is finitely
covered by Σ2×S1 where Σ is a closed orientable sur-
face other than S2.

The condition that M is hyperbolic is a purely topo-
logical condition – all that is meant is that M admits
a hyperbolic metric, not that the induced Riemannian
metric on some slice is hyperbolic (indeed this is usu-
ally not the case).



Related results

Theorem (UCLA thesis, 1996). Mn is a spacelike
slice of a de Sitter spacetime if and only if M admits
a conformally flat Riemannian metric.

Remarks

1. This (de Sitter) result works in all dimensions.

2. Admitting a conformally flat Riemannian metric is
a non-trivial topological constraint when n ≥ 3.

3. More is true: the moduli space of de Sitter domains
of dependence M ×R is parameterized by the moduli
space of conformally flat Riemannian metrics on M .

4. In contrast, the main theorem is special to 3 + 1
and makes no statement about the moduli space of
flat metrics on M × R. In the course of the proof,
though, we will classify all holonomy representations
π1(M)→ ISO(3, 1).

5. The moduli space in the flat 2 + 1 dimensional case
was worked out by Geoff Mess in 1990.



Some perspective

Thurston discovered in the 1970’s that “most” 3-man-
ifolds are hyperbolic. The expected characterization
is that M is hyperbolic if and only if M is irreducible
(i.e. every smoothly embedded sphere bounds a ball),
π1(M) is infinite, and π1(M) contains no Z ⊕ Z sub-
group.

Nevertheless, there are lots of other possibilities for 3-
manifolds which we must prove do not occur as slices:

1. Manifolds not covered by R3 (like S3, S2 ×S1, . . .)

2. Some Seifert fiber spaces. These are 3-manifolds
which are foliated by circles. Of these, some are finitely
covered by Σ × S1 while others are not (e.g. the unit
tangent bundle of a hyperbolic surface). A key element
in the proof is to exclude these non-trivial Seifert fiber
spaces.

3. Solv-manifolds, graph manifolds, etc.

While it is instructive to think about the main theo-
rem in terms of excluding various families, one cannot
prove it this way since 3-manifolds are not classified.



Realizing 3-manifolds as slices

This is the easier half of the theorem. The 3-manifolds
which arise in the statement all admit nice Riemannian
metrics with (metric) universal cover either H3, E3, or
H2 ×R.

It suffices to realize these “geometries” inside R4
1:



Proof of the converse

A flat metric on M×R yields a spacelike immersion d :
M̃ → R4

1 and a holonomy representation φ : π1(M)→
ISO(3, 1) with discrete image.

A result of S. Harris shows that d is an achronal em-
bedding, in particular that M̃ is homeomorphic to R3.

The rest of the proof amounts to classifying possibil-
ities for the discrete groups φ(π1(M)) in ISO(3, 1)
and then using powerful “homotopy equivalence im-
plies homeomorphism” results from 3-manifold topol-
ogy. In other words, the 3-manifolds which arise as
slices are all determined by their fundamental groups.



Holonomy representations

We have

1→ R4
1 → ISO(3, 1)→ SO(3, 1)→ 1

and so the holonomy Γ = φ(π1(M)) has a translational
part which is a discrete subgroup of R4

1, isomorphic to
Zk for k = 0, 1, 2, 3. We have:

1→ Zk → Γ→ L(Γ)→ 1

Statements below are “up to finite covers”:

Case k = 0: Either Γ = Z3 or Γ embeds as a discrete
subgroup of SO(3, 1). In the first case, M is a 3-torus
(Waldhausen), and in the second case M is hyperbolic
(Gabai, Meyerhoff, and N. Thurston).

Case k = 1: The Seifert Fiber Space Conjecture, re-
cently resolved by Gabai, Casson-Jungreis, and Mess,
implies in this case that M is a Seifert fiber space. The
key step is to show it is covered by Σ× S1.

Case k = 2: A theorem of Stallings implies that M
fibers over the circle with torus fibers. A straightfor-
ward argument shows that in fact M is a 3-torus.

Case k = 3: M is a 3-torus (Waldhausen).


