Recent advances in neural
language models

Kevin Scannell
September 10, 2018

Language modeling

e Chomsky: “.. the notion of ‘probability of a sentence’ is an entirely useless one,
under any known interpretation of this term.”

Let S = “this is an entirely useless notion”

P(S) = P(thisl?) P(islthis) P(entirelylthis is) ... P(notionlthis is an entirely useless)
Usually formulated and computed this way (word prob. given history)

Humans are pretty good at estimating these, at least

P(FridaylMy party is this coming) > P(TuesdaylMy party is this coming)

P(isIThe man with the glasses) > P(arelThe man with the glasses)

Applications

Machine translation

Speech recognition

Predictive text

Dialogue systems

Spelling/grammar checking

Text normalization (e.g. modernization)
Optical character recognition

Evaluation

Extrinsic: end-to-end evaluation of more complex system

Intrinsic: what probability does the model assign to a test corpus?

Usually we take average negative log prob (base 2); units of “bits per word”
2 raised to this power is the “perplexity” of the model (PPL)

Maximizing prob. of test corpus == minimizing bits/word or perplexity

N-gram models

Pick an n, usually 3, 4, or 5 in practice

First, we’ll estimate P(wj lw, ... WJ._1) = P(wj | Wi i WJ._1)
Then, given a training corpus we just count things!
P(WJ. | W, g o WJ._1) = #(WJ._n+1 WJ.) / #(Wj_n+1 WJ._1)

The key to all of this is how to deal with zero counts

We “smooth” these models appropriately (maybe a later talk)

Pre-neural SotA (English!)

Traditional test setup uses data from the Penn Treebank (PTB):

930k words training data, 74k dev, 82k test; 10k words in vocabulary
3-gram model with Kneser-Ney smoothing: PPL 148.3 (7.21 bits/word)
5-gram model with Kneser-Ney smoothing: PPL 141.2 (714 bits/word)

Newer “billion word benchmark” (2013):

5-gram model with Kneser-Ney smoothing: PPL 67.6 (6.07 bits/word)

Feed-forward neural networks

Fix a vocabulary V, each word w encoded as a d-dimensional vector C(w)

e.g. “One-hot” encoding, dimension = size of vocabulary V (can do better!)

NN is a device that accepts n-1 word vectors as input, outputs prob dist over V
Original networks used one “hidden layer” of K neurons

Each neuron accepts all d(n-1) inputs and produces a real-valued output

Top layer has VI neurons, each accepts input from all K hidden neurons

Final step is a “softmax” to produce a probability distribution

Bengio et al

i-th output = P(w, = i| context)

softmax
(eo0o [X] 900
/ 4 \
V4 Vi B AY
’ ’ most| computation here \
7 ’ \
!] \
! 1 \
! 1 1
’l ! tanh !
1
g ., e e ®0) ,'
I]
I ’
1 ’
1 /
4
\ 7

Table ~.. Matrix C
shared parameters
across words

index for wy_, 11 index for w;_» index for w;_1

Training and evaluation

Each neuron stores a number of tweakable parameters

We train via (stochastic) gradient descent using a corpus of text

One training example input is a sequence of n-1 words

Output we want is the actual next word w (prob dist assigning 1.0 to w)

Feed a training example into the network, produces a probability distribution
Want to minimize error (or “loss”) = - log P(w)

Compute partial derivatives of loss with respect to each parameter

Give a small bump in the direction of the negative gradient

Model above evaluated on PTB: PPL 141.8 (715 bits per word)

Recurrent neural networks

:
LaH - A

@—1>—@

Sample Evaluations of RNN/LSTM

“Vanilla” RNN, 400 hidden neurons on PTB: PPL 124.7 (6.96 bits per word)
Merity et al (2017), variant of LSTM on PTB: PPL 57.3 (5.84 bits per word)
LSTM, 8192 units evaluated on 1B benchmark: PPL 32.2 (5.01 bits per word)
Linear interpolation of 10 LSTM models, 1B: PPL 23.7 (4.57 bits per word)

Challenges

Implicit assumption that research on English = research on language
Dealing with linguistic complexities (morphology)

Lack of large training corpora for many languages

Domain adaptation

Dialects and non-standard varieties

Diachronic change

Controlling complexity / model size

Character models

Nothing special about decomposing S into words!

Could do syllables, morphemes, or even individual characters
Reduces the vocabulary size significantly

Works for languages like Chinese, Japanese, Thai, Tibetan
Need to model longer term dependencies

Research here has collided with work on text compression

Incorporating linguistic knowledge

Celtic languages have “initial mutations”

Almost always predictable from previous two words

bad seoil “sailboat”, mo bhad seoil “my sailboat”, ar mbad seoil “our sailboat”
Word-based models don’t “see” that these are all the same word

If most training examples are first type, say, harder to predict collocation

Easy enough to use a factored language model to get better results for Irish
Examples like this abound in Irish and other languages

