
Recent advances in neural
language models

Kevin Scannell
September 10, 2018

Language modeling

● Chomsky: “... the notion of ‘probability of a sentence’ is an entirely useless one,
under any known interpretation of this term.”

● Let S = “this is an entirely useless notion”
● P(S) = P(this|^) P(is|this) P(entirely|this is) ... P(notion|this is an entirely useless)
● Usually formulated and computed this way (word prob. given history)
● Humans are pretty good at estimating these, at least
● P(Friday|My party is this coming) > P(Tuesday|My party is this coming)
● P(is|The man with the glasses) > P(are|The man with the glasses)

Applications

● Machine translation
● Speech recognition
● Predictive text
● Dialogue systems
● Spelling/grammar checking
● Text normalization (e.g. modernization)
● Optical character recognition
● ...

Evaluation

● Extrinsic: end-to-end evaluation of more complex system
● Intrinsic: what probability does the model assign to a test corpus?
● Usually we take average negative log prob (base 2); units of “bits per word”
● 2 raised to this power is the “perplexity” of the model (PPL)
● Maximizing prob. of test corpus == minimizing bits/word or perplexity

N-gram models

● Pick an n, usually 3, 4, or 5 in practice
● First, we’ll estimate P(wj | w1 … wj-1) ≈ P(wj | wj-n+1 … wj-1)
● Then, given a training corpus we just count things!
● P(wj | wj-n+1 … wj-1) ≈ #(wj-n+1 … wj) / #(wj-n+1 … wj-1)
● The key to all of this is how to deal with zero counts
● We “smooth” these models appropriately (maybe a later talk)

Pre-neural SotA (English!)

● Traditional test setup uses data from the Penn Treebank (PTB):
● 930k words training data, 74k dev, 82k test; 10k words in vocabulary
● 3-gram model with Kneser-Ney smoothing: PPL 148.3 (7.21 bits/word)
● 5-gram model with Kneser-Ney smoothing: PPL 141.2 (7.14 bits/word)
● Newer “billion word benchmark” (2013):
● 5-gram model with Kneser-Ney smoothing: PPL 67.6 (6.07 bits/word)

Feed-forward neural networks

● Fix a vocabulary V, each word w encoded as a d-dimensional vector C(w)
● e.g. “One-hot” encoding, dimension = size of vocabulary V (can do better!)
● NN is a device that accepts n-1 word vectors as input, outputs prob dist over V
● Original networks used one “hidden layer” of K neurons
● Each neuron accepts all d(n-1) inputs and produces a real-valued output
● Top layer has |V| neurons, each accepts input from all K hidden neurons
● Final step is a “softmax” to produce a probability distribution

Bengio et al

Training and evaluation

● Each neuron stores a number of tweakable parameters
● We train via (stochastic) gradient descent using a corpus of text
● One training example input is a sequence of n-1 words
● Output we want is the actual next word w (prob dist assigning 1.0 to w)
● Feed a training example into the network, produces a probability distribution
● Want to minimize error (or “loss”) = - log P(w)
● Compute partial derivatives of loss with respect to each parameter
● Give a small bump in the direction of the negative gradient
● Model above evaluated on PTB: PPL 141.8 (7.15 bits per word)

Recurrent neural networks

Sample Evaluations of RNN/LSTM

● “Vanilla” RNN, 400 hidden neurons on PTB: PPL 124.7 (6.96 bits per word)
● Merity et al (2017), variant of LSTM on PTB: PPL 57.3 (5.84 bits per word)
● LSTM, 8192 units evaluated on 1B benchmark: PPL 32.2 (5.01 bits per word)
● Linear interpolation of 10 LSTM models, 1B: PPL 23.7 (4.57 bits per word)

Challenges

● Implicit assumption that research on English = research on language
● Dealing with linguistic complexities (morphology)
● Lack of large training corpora for many languages
● Domain adaptation
● Dialects and non-standard varieties
● Diachronic change
● Controlling complexity / model size

Character models

● Nothing special about decomposing S into words!
● Could do syllables, morphemes, or even individual characters
● Reduces the vocabulary size significantly
● Works for languages like Chinese, Japanese, Thai, Tibetan
● Need to model longer term dependencies
● Research here has collided with work on text compression

Incorporating linguistic knowledge

● Celtic languages have “initial mutations”
● Almost always predictable from previous two words
● bád seoil “sailboat”, mo bhád seoil “my sailboat”, ár mbád seoil “our sailboat”
● Word-based models don’t “see” that these are all the same word
● If most training examples are first type, say, harder to predict collocation
● Easy enough to use a factored language model to get better results for Irish
● Examples like this abound in Irish and other languages

