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Abstract. The stamping deformation was defined by Apanasov as the first example of a deformation of

the flat conformal structure on a hyperbolic 3-orbifold distinct from bending. We show that in fact the

stamping cocycle is equal to the sum of three bending cocycles. We also obtain a more general result,

showing that geodesic lengths are constant to first order under deformations of the flat conformal structure

for any hyperbolic 3-orbifold.

1. Introduction

Let Γ be a lattice in IsomH
3 and let M = Γ\H3 be the corresponding hyperbolic 3-orbifold. We are

interested in the so-called “quasi-Fuchsian” deformation theory of Γ when included into the larger group
IsomH

4. By the holonomy theorem and the isomorphism IsomH
4 ∼= MöbS

3, local deformations of Γ are
equivalent to deformations of the induced flat conformal (or Möbius) structure on M .

The bending construction is the primary source of deformations of this kind, but works only in the case
that M contains an embedded two-sided totally geodesic surface S. Under small bending deformations,
one component of the convex hull boundary in H

4 of the resulting quasi-Fuchsian group is 3-dimensional
and totally geodesic except along codimension-one singularities corresponding to copies of H

2 ∼= S̃ where
it is “bent”. Examples of this kind first appeared in work of Thurston [14, §8.7.3] and Apanasov-Tetenov
[4], [1]; a general existence result holding in all dimensions was proved by Johnson-Millson [9].

There are only a few known deformations that produce codimension-two singularities in the convex
hull boundary. The first of these, and the example of primary interest in this paper, was the so-called
“stamping deformation” defined by Apanasov [2], [3] for a certain finite-covolume lattice in IsomH

3. A
few years later M. Kapovich [10] computed the dimension of the deformation space for any cocompact
reflection group (it’s the number of faces minus 4) and showed that the base representation into IsomH

3

is a smooth point of the representation variety. He also gave an example of a non-tetrahedral reflection
group containing no embedded totally geodesic surfaces (see [10, §6.3]); it follows that the deformations of
this group have codimension-two singularities in the convex hull boundary.

Very little else is known about this question in general, though there are a few other interesting examples
in the literature; some rigid [12], and some admitting deformations [13], [5], [11], [6] (occasionally only to
first order).

Our interest in the stamping example began with [6], in which we found an infinitesimal deformation
of the link complement 82

14
supported on a piecewise totally geodesic 2-complex that is not isotopic to an

immersed totally geodesic surface. This complex contains a “singular geodesic” formed by the intersection
of three 2-cells along their boundaries, arranged combinatorially like three pages meeting the binding
of a book. In this, our example is somewhat evocative of Apanasov’s stamping example which has a
similar codimension-two singularity, though in his case it is formed as the intersection of three complete
two-dimensional planes passing through the singularity.

Date: October 1, 2005.

1991 Mathematics Subject Classification. Primary: 57M50; Secondary: 57N10, 22E40.

Key words and phrases. stamping, bending, flat conformal structures, quasi-Fuchsian groups.

1



This difference turned out to be of critical importance in our failed attempts to use stamping as a recipe
for integrating our infinitesimal deformation. Indeed, we were led directly to the following result, which
we believe helps clarify the general picture:

Theorem 1.1. The stamping deformation is a sum of bending deformations.

We give a precise formulation and proof in §3.
We were led to Theorem 1.1 by the following simple observation that may be of independent interest

(see Proposition 2.1): lengths of geodesics in M are constant to first order under infinitesimal deformations
of the flat conformal structure. This is basically a consequence of the local rigidity of lattices in O(3, 1).

2. Derivatives of lengths of geodesics

For g ∈ IsomH
n, we write

`(g) = inf
x∈Hn

{dHn(x, g · x)}
for the minimum translation length of g. Of course this is a conjugacy invariant:

`(ghg−1) = `(h)

for all g, h ∈ IsomH
n.

In all that follows we will be considering the case of a lattice Γ ⊆ G3 = IsomH
3 and its deformations

in the larger group G4 = IsomH
4. Of course IsomH

n is locally isomorphic to SO(n, 1), so we have
identifications of Lie algebras g3

∼= so(3, 1) and g4
∼= so(4, 1).

Now if ρt is family of representations in Hom(Γ, G4) depending smoothly on the parameter t, with ρ0

equal to the inclusion of Γ in G3, we can view a tangent vector to the family as a function v : Γ → so(4, 1)
given by

v(γ) = ρ̇(γ)γ−1

and satisfying the cocycle relation

v(γ1γ2) = v(γ1) + Ad(γ1)v(γ2).

Trivial deformations (those induced by conjugation in G4) yield coboundaries v(γ) = v0 −Ad(γ)v0, and it
is therefore reasonable to view H1(Γ, so(4, 1)) as the space of infinitesimal quasi-Fuchsian deformations of
Γ.

For any γ ∈ Γ, the inclusion of the subgroup 〈γ〉 induces a restriction map on cohomology which we
write

i∗γ : H1(Γ, so(4, 1)) → H1(〈γ〉, so(4, 1)).
When Γ has parabolic elements, it is typical to restrict one’s attention to deformations that are trivial

on the boundary cusps; more precisely, in such cases we shall consider the subspace PH1(Γ, so(4, 1))
consisting of cohomology classes v such that i∗γ(v) = 0 for every parabolic γ ∈ Γ.

Proposition 2.1. Let Γ be a (non-uniform) lattice in G3. If v ∈ (P )H1(Γ, so(4, 1)) is an infinitesimal
deformation of Γ into G4, then i∗γ(v) = 0 for γ ∈ Γ unless γ is purely hyperbolic. In any case, we have

d

dt

∣

∣

∣

t=0

`(exp(tv(γ))γ) = 0.

Proof. First, the Lie algebra so(4, 1) splits as a G3-module:

so(4, 1) ∼= so(3, 1) ⊕ R
4

1
,

where R
4

1
is the standard representation of G3 ⊆ O(3, 1) on Minkowski space. From this we obtain a

splitting in cohomology

(P )H1(Γ, so(4, 1)) ∼= (P )H1(Γ, so(3, 1)) ⊕ (P )H1(Γ, R4

1
).
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Therefore
(P )H1(Γ, so(4, 1)) ∼= (P )H1(Γ, R4

1
)

by local rigidity of lattices in G3 [7], [8]. So in what follows we will assume that the values of v lie in the
standard representation R

4

1
.

If γ is elliptic, it has finite order since Γ is discrete, and it follows that H1(〈γ〉, R4

1
) = 0. If γ is parabolic,

then PH1(〈γ〉, R4

1
) = 0 by hypothesis. Finally suppose γ is loxodromic with a non-trivial rotational part.

Since 〈γ〉 is infinite cyclic, a cocycle is uniquely determined by its value on γ, so Z1(〈γ〉, R4

1
) ∼= R

4

1
. But

γ (viewed as an element of O(3, 1)) has no 1-eigenvalues and so I − γ maps onto R
4

1
. This says Z1 = B1

and so H1(〈γ〉, R4

1
) = 0.

For the second part, we first observe that the result is clear when v(γ) = v0 − γv0 is a coboundary; in
this case,

`(exp(tv0 − tγv0 + O(t2))γ) = `(exp(tv0) exp(−tγv0)γ)

= `(exp(tv0)γ exp(−tv0)γ
−1γ)

= `(exp(tv0)γ exp(tv0)
−1)

= `(γ)

and the result follows by differentiating. Therefore we need only consider the case that γ is purely hy-
perbolic, and by conjugating we may assume γ is a Möbius transformation of the form x 7→ λx for
1 6= λ ∈ (0,∞). Since 〈γ〉 ∼= Z,

H1(〈γ〉, so(4, 1)) ∼= H0(〈γ〉, so(4, 1)) ∼= so(4, 1)〈γ〉

which is four-dimensional, spanned by Lie algebra elements v0, v1, v2, v3, where 〈v1, v2, v3〉 form a basis of
so(3), v1 ∈ so(2), and exp(tv0) is of the form x 7→ etλ0x, λ0 ∈ R. It is clear that the deformation exp(tvj)γ
remains in G3 if and only if j = 0, 1. So by choosing our coefficients to lie in R

4

1
as above, we may assume

j = 2 or j = 3, and in either case `(exp(tv(γ))γ) is constant in t. ¤

There is a mildly subtle point in the previous argument that contrasts with the well-known fact from
hyperbolic geometry that any loxodromic in G4 is conjugate into G3. The point is that one can have a small
deformation of a purely hyperbolic element of G3 through loxodromics in G4, but for which there are no
small elements conjugating back into G3. This is precisely the source of the two-dimensional cohomology
group H1(〈γ〉, R4

1
) for purely hyperbolic γ.

Corollary 2.2. If ρt : (−ε, ε) → Hom(Γ, G4) is a deformation of ρ0 = id depending smoothly on the
parameter t, then d

dt

∣

∣

t=0
`(ρt(γ)) = 0 for all γ ∈ Γ.

Proof. If we let v(γ) = ρ̇(γ)γ−1 be the corresponding infinitesimal deformation, then

ρt(γ) = exp(tv(γ) + O(t2))γ

and the result follows from the previous proposition. ¤

3. Stamping is bending

We begin by reviewing the details from [3]. The initial group Γ ⊆ G3 is generated by side pairings on a
finite-volume hyperbolic polyhedron defined by a configuration of eight circles in ∂H

3 = S
2 = R

2 ∪ {∞}.
Six of these circles have radius one and are centered at the sixth roots of unity

√
3e

kπi

3 ; the faces defined
by these circles are paired with themselves, giving generating reflections σi, i = 0, . . . , 5. The other two
faces are defined by the circles centered at the origin of radius 1 and 2; these are paired with each other,
giving a purely hyperbolic generator which we denote by γ. Observe that all pairs of intersecting circles
meet in angles of π

3
; it follows easily that Γ is a finite-covolume (non-cocompact) lattice in G3. See figure

1.
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Q3

Q1

Q2

Figure 1. Initial configuration for the stamping example, including the bending lines Qj

To define a deformation of Γ into G4, we view these circles as also defining eight 2-spheres in ∂H
4 =

S
3 = R

3 ∪ {∞}, and vary these spheres while preserving the angles between them and the structure of
the cusps. For values of t in the interval (π

2
, 2π

3
], construct unit vectors v1(t), v2(t), and v3(t) in R

3 such
vi(t) · vj(t) = cos t for i 6= j. These vectors define a trihedral angle which is an octant for t = π

2
and

gradually “flattens out” and becomes planar at t = 2π
3

. Clearly we have some freedom in constructing
these vectors, and following Apanasov we choose to normalize so that v1(t) = (1, 0, 0) for all t (there is one
remaining degree of freedom coming from rotation about v1(t) that we leave unspecified for the moment).

Next, for any permutation (ijk) of the indices (123), we define wk(t) to be the unit vector in the direction

vi(t) + vj(t). Let Γt be the group generated by reflections in spheres centered at
√

3vi(t) and
√

3wi(t)
for i = 1, 2, 3, each of radius rt = 2 sin t

4
, together with a purely hyperbolic element pairing the spheres

centered at the origin of radii R±
t =

√
3 cos t

4
± sin t

4
. Clearly Γ 2π

3

= Γ. A somewhat tedious calculation

verifies that Γt is a discrete group isomorphic to Γ for all t ∈ (π
2
, 2π

3
]; we write ρt : Γ ∼= Γt ⊆ G4 for

the composition of this isomorphism with the inclusion into G4. The curve of representations ρt is what
Apanasov calls the stamping deformation.

Let S denote the space of all round 2-spheres in R
3; we identify S with a half-space in R

4 by assigning
coordinates (x, y, z, r) to a sphere centered at (x, y, z) of radius r. There is a map S → G4 that sends a
given sphere to the Möbius reflection fixing it. The primary fact we shall need about this map is that it
is smooth, and in particular that a tangent vector (ẋ, ẏ, ż, ṙ) to S gives rise to a well-defined (and easily
computable) element of so(4, 1). Tangent vectors such that ẋ = ẏ = ṙ = 0 correspond to Lie algebra
elements that lie in the complement R

4

1
of so(3, 1) as discussed in the proof of Proposition 2.1.

Observe that there are three totally geodesic suborbifolds of Γ\H3 defined by the planes Qj in the upper
half space containing the positive z-axis and the point vj(

2π
3

) for j = 1, 2, 3. The geodesic formed by the
intersection of the planes Qj is also the invariant axis for the purely hyperbolic element γ ∈ Γ.

In [3], it is argued that a cocycle for the stamping deformation cannot lie in the linear span of the
bending cocycles defined by the individual surfaces Qj because (a calculation shows) d

dt

∣

∣

t=0
`(ρt(γ)) 6= 0

which is clearly not true for a linear combination of bends. We saw in §2, however, that this derivative
cannot be non-zero for any deformation (or any element) of Γ.

As it turns out, the problem lies with the fact that the given parameterization of stamping (in t)
does not define a smooth family of representations into G4, and therefore does not define a cocycle at
all. However, if we reparameterize appropriately, the same curve of representations can be made smooth,
thereby defining a cocycle v ∈ PH1(Γ, so(4, 1)) such that, as expected, d

ds
|s=0`(ρs(γ)) = 0 with respect to

the new parameter s. In fact, more is true:
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Theorem 3.1. The stamping cocycle v is the sum of bending cocycles supported on the totally geodesic
surfaces Qj for j = 1, 2, 3.

Proof. We begin by showing that the given parameterization in t is not smooth. If it were, one could
differentiate the conditions vi(t) · vi(t) = 1 and vi(t) · vj(t) = cos t at t = 2π

3
to obtain the following

equalities, where we have used the normalization v1(t) = (1, 0, 0) and have written vi(t) = (xi, yi, zi) for
i = 2, 3:

− 1

2
ẋ2 +

√
3

2
ẏ2 = 0

− 1

2
ẋ3 −

√
3

2
ẏ3 = 0

ẋ2 = −
√

3

2

ẋ3 = −
√

3

2

− 1

2
ẋ3 −

1

2
ẋ2 +

√
3

2
ẏ3 −

√
3

2
ẏ2 = −

√
3

2

The first four equations imply that ẏ3 = −ẏ2 = 1

2
, but plugging these values into the fifth equation leads

to
√

3 = −
√

3

2
, a contradiction.

With an eye toward reparameterizing, we can make this even more explicit. By symmetry we may
choose

v2(t) = (cos t, y(t), z(t))

and

v3(t) = (cos t,−y(t), z(t))

from which it follows that

cos2 t + y2 + z2 = 1

and

cos2 t − y2 + z2 = cos t.

Solving for y and z, we obtain:

y(t)2 =
1

2
(1 − cos t)

z(t)2 =
1

2
+

1

2
cos t − cos2 t.

Expanding the expression for z(t)2 as a Taylor series, we find:

z(t)2 = C(
2π

3
− t) + O((

2π

3
− t)2)

for C 6= 0 and so z(t) does not have a finite derivative at t = 2π
3

.

To fix this, we simply select the new parameter s =
√

C( 2π
3
− t), so that t = 2π

3
− 1

C
s2. Since each of

the functions x(t) = cos t, y(t), z(t), rt, and R±
t is differentiable with respect to t at t = 2π

3
, the chain rule

implies that each derivative with respect to s exists and is equal to 0 (since dt
ds

= 0). On the other hand,

by construction, we have dz
ds

(0) = 1, and so each of the six reflecting spheres moves in a tangent direction

(ẋ, ẏ, ż, ṙ) of the form (0, 0, βk, 0). Note that this now agrees with the basis for H1 of a reflection group
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1

1

21

0

1

2

Figure 2. Values of ż for the reparameterized stamping cocycle

exhibited by Kapovich in [10, §3.2], and corresponds to a choice of cocycle representative with coefficients
in R

4

1
as in Proposition 2.1. The values of βk for our chosen normalization are given in figure 2.

The bending deformations are easy to describe to first order. First, the plane Q1 is the xz-plane, which
meets two of the generating reflections in right angles, and separates the other four into two intersecting
pairs. To bend along this plane we rotate each of these pairs about the x-axis through the same angle
and “upwards” (in the positive z direction) and leave the other generators alone. To first order, we may
choose the speed of rotation in such a way that the rotated spheres vary by (ẋ, ẏ, ż, ṙ) = (0, 0, 1

2
, 0), since

their centers are all the same distance from the x-axis.
The planes Q2 and Q3 divide up the generating spheres similarly, in each case into two pairs of two

intersecting spheres, with one pair involving the sphere centered at v1(t) = (1, 0, 0). Now in these two
cases, instead of bending each side by the same amount, we choose to bend in such a way that the
side containing (1, 0, 0) is left unchanged while the other side is rotated upwards. Doing so contributes

(ẋ, ẏ, ż, ṙ) = (0, 0, 1

2
, 0) to each rotated sphere; once each for the spheres centered at

√
3e

2πi

3 and
√

3e
4πi

3

and twice for the sphere centered at (−1, 0, 0). Summing the contributions from the bends along Q1, Q2,
and Q3 we recover exactly the same vectors (0, 0, βk, 0) that were computed above for the reparameterized
stamping deformation (and depicted in figure 2).

For both deformations, the two 2-spheres centered at the origin are fixed to first order, and so each
cocycle in PH1(Γ, so(4, 1)) is completely determined by the corresponding 6-tuple of tangent vectors
(ẋ, ẏ, ż, ṙ). Since these vectors coincide, the cocycles must coincide. ¤

The general phenomenon described in this theorem is not new; Kapovich gave yet another reflection
group in [10, §6.2] that contains a pair of intersecting totally geodesic surfaces, such that the linear span
of the bending cocycles is tangent to a smooth 2-dimensional family of deformations. However, these
deformations are only given implicitly (in the literal sense that they are shown to exist by an application
of the implicit function theorem). For this reason we believe the stamping example retains some interest;
now instead of it being the prototypical non-bend, we hope it can be used as a blueprint for integrating
sums of bending cocycles along intersecting surfaces more generally, in the spirit of Tan’s paper [13]. This
should be contrasted with the higher-dimensional case, where Johnson and Millson [9] showed that there
are quadratic obstructions to integrating a sum of bends in some cases.

Finally, we have not been able to show that the “stamping with torsion” example from [3, §4] reduces
to any simpler deformation, and probably deserves closer study.
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