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ABSTRACT OF THE DISSERTATION

Flat Conformal Structures and Causality in de Sitter Manifolds

by

Kevin Patrick Scannell

Doctor of Philosophy in Mathematics

University of California, Los Angeles, 1996

Professor Geoffrey Mess, Chair

Given a compact n-manifold Σ with a flat conformal structure, there is a canonical

procedure for constructing an associated (n + 1)-dimensional de Sitter spacetime

homeomorphic to Σ×(0,∞); we call these standard de Sitter spacetimes. Our main

theorem is a classification of compact de Sitter manifolds, complementing results

of G. Mess in the flat and anti-de Sitter cases. The first part of the classifica-

tion asserts that every de Sitter spacetime which is a small regular neighborhood

of a compact spacelike hypersurface isometrically embeds in a standard de Sit-

ter spacetime. This fact is used to obtain our second main result, which states

that a compact (2 + 1)-dimensional de Sitter spacetime with non-empty spacelike

boundary is homeomorphic to a product Σ× [0, 1].
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CHAPTER 1

Introduction

By a spacetime, we shall mean a connected, oriented, time-oriented Lorentz
manifold. A de Sitter (resp. flat, anti-de Sitter) spacetime is a spacetime of con-
stant positive (resp. zero, negative) curvature. In [2], Carrière uses an elegant
geometric argument to show that a compact flat spacetime without boundary is
geodesically complete. This result has been extended by Mess [35] and Klingler
[26] to the anti-de Sitter and de Sitter cases respectively. A spacetime-bordism is
a compact spacetime with non-empty spacelike boundary, which we can view as
a bordism between the past and future boundary components. The general ap-
proach to classifying spacetime-bordisms of constant curvature (see Witten [47],
[48]) is to first classify those spacetimes which are small regular neighborhoods
of closed spacelike hypersurfaces, and then to show that an arbitrary spacetime-
bordism is actually homeomorphic to a product Σ× [0, 1] (typically with spacelike
slices Σ × {t}). Mess [35] has successfully carried out this program in the three-
dimensional flat and anti-de Sitter cases (see Appendix). In this paper we finish
the classification by providing a complete solution in the de Sitter case.

Suppose Σ is a compact n-manifold without boundary, equipped with a flat
conformal structure. Thurston has given a construction by means of which one
can “thicken” a developing map dev : Σ̃ → Sn of the flat conformal structure
to obtain an equivariant immersion D : Σ̃ × (0,∞) → Hn+1. In dimension two,
this was used by Thurston to parameterize CP 1-structures on Σ by the space
of measured geodesic laminations on Σ (these arise as “bending laminations” on
the frontier of the image of D). The projective dual of this construction gives
an equivariant immersion of Σ̃ × (0,∞) into (n + 1)-dimensional de Sitter space,
inducing a de Sitter metric on Σ × (0,∞); the spacetimes obtained in this way
are the standard de Sitter spacetimes, constructed in detail in §6. The theorem
below gives the first part of the two-step classification program outlined above,
and verifies a conjecture of Mess [35].

Theorem 1.1 Every de Sitter spacetime which is a small regular neighborhood
of a compact spacelike hypersurface isometrically embeds in a standard de Sitter
spacetime.

Recall that a spacetime M is a domain of dependence if it contains a global
Cauchy hypersurface, i.e. a closed spacelike hypersurface Σ such that every inex-
tendible causal curve in M meets Σ exactly once (see §3). A theorem of Geroch
[12] shows that the interior of a domain of dependence is homeomorphic to a prod-
uct Σ× R in such a way that each slice Σ× {t} is a global Cauchy hypersurface,
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and thus the second part of the classification program (in dimension three) will
follow from our other main result:

Theorem 1.2 Every three-dimensional de Sitter spacetime-bordism is a domain
of dependence, with the exception of those standard de Sitter spacetimes arising
from closed two-dimensional Hopf manifolds.

In the process of proving Theorem 1.2, we will obtain necessary and sufficient
conditions for the appearance of a non-trivial causal horizon in a standard de Sitter
spacetime:

Theorem 1.3 Suppose Σ is a closed, orientable surface with a CP 1-structure and
let M≈ Σ× (0,∞) be the associated standard de Sitter spacetime. Then M is a
domain of dependence, and embeds in a strictly larger de Sitter spacetime if and
only if Σ contains a codimension-zero Hopf manifold.
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CHAPTER 2

Geometric Structures and Deformation Spaces

Good references for the material presented in this chapter are [1], [16], and [45].
Suppose G is a Lie group which acts faithfully, transitively, and analytically on a
manifold X. Let M be a connected C0,1 manifold, possibly with boundary, with
a fixed basepoint m0 ∈M . By convention, the universal cover a space will always
be indicated by the addition of a tilde, so M̃ denotes the universal cover of M .

A based (G,X)-structure on M is a pair (f, φ) consisting of a C0,1 local embed-
ding f : M̃ → X, and a homomorphism φ : π1(M,m0)→ G satisfying:

f(γ · x) = φ(γ) · f(x), (2.1)

for all γ ∈ π1(M,m0) and all x ∈ M̃ (we say f is φ-equivariant). The homomor-
phism φ is called the holonomy representation of the based (G,X)-structure, and
f is called the developing map. Let D(G,X)(M) denote the set of based (G,X)-
structures on M , identifying pairs which differ by the action of a diffeomorphism
g : (M,m0) → (M,m0) isotopic to the identity rel m0. Projection onto the sec-
ond component induces a well-defined map D(G,X)(M) → Hom(π1(M,m0), G).
The Thurston-Lok holonomy theorem asserts that when M is compact and of the
same dimension as X, this map is a local homeomorphism with respect to the
natural topologies [16],[32],[45, §5.1]. The deformation space T(G,X)(M) of (G,X)-
structures on M is defined to be the quotient of D(G,X)(M) under conjugation by
G. A (G,X)-manifold is a pair consisting of a connected, C0,1 manifold M and
a point in T(G,X)(M). We will habitually abuse terminology by referring to an
element of T(G,X)(M) by a representative based (G,X)-structure.

Note that a based (G,X)-structure can only exist if the dimension of M is less
than or equal to the dimension of X. When these dimensions are equal, a based
(G,X)-structure on M defines a (G,X)-structure in the classical sense; that is, a
maximal atlas of charts {φα : Uα → X} such that each overlap map φβ ◦ φ

−1
α :

φα(Uα ∩ Uβ) → X is given by the restriction of the action of an element of G on
each connected component of φα(Uα ∩ Uβ). Conversely, given a (G,X)-structure
in this sense, the standard analytic continuation construction recovers a holonomy
representation and an equivariant developing map, unique up to conjugation by
an element of G.

Our primary examples of geometric structures will come from the constant
curvature Riemannian and Lorentzian model spaces. Fix integers 0 ≤ k ≤ n with
n ≥ 2, and define Rn

k to be the space Rn equipped with the signature (n − k, k)
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inner product

〈v,w〉 = −
k

∑

i=1

viwi +
n

∑

j=k+1

vjwj. (2.2)

When k = 1, we call Rn
1 (flat) Minkowski space. Recall that a vector v ∈ Rn

1 is
said to be:

• spacelike if 〈v,v〉 > 0;

• null or lightlike if 〈v,v〉 = 0;

• timelike if 〈v,v〉 < 0;

• causal if 〈v,v〉 ≤ 0.

Define:
Sn1 = {v ∈ Rn+1

1 | 〈v,v〉 = 1} (2.3)

and
Hn
1 = {v ∈ Rn+1

2 | 〈v,v〉 = −1}. (2.4)

Sn1 and Hn
1 are the models for n-dimensional de Sitter space and anti-de Sitter space

and inherit Lorentz metrics of constant curvature +1 and −1 respectively. Note
that Sn1 is homeomorphic to Sn−1 × R, and admits a natural conformal compacti-
fication Sn1 ≈ Sn−1 × [0, 1] by (n − 1)-spheres ∂−∞Sn1 and ∂+∞Sn1 at past and future
infinity respectively.

An alternative model of de Sitter space is constructed by means of the natural
projection $ : Rn+1

1 \ {0} → RP n. Define (Hn)∗ to be the image in RP n of the
spacelike vectors of Rn+1

1 ; we call (Hn)∗ the projective model of de Sitter space.
Note that the restriction of $ to Sn1 induces a double covering of (Hn)∗. Recall
that the image in RP n of the timelike vectors of Rn+1

1 is the usual projective
(Klein) model of n-dimensional hyperbolic space Hn, with the projectivized null
vectors corresponding to the sphere at infinity ∂∞Hn; thus ∂∞Hn simultaneously
compactifies Hn and (Hn)∗. The advantage of this model is that we may exploit
the projective duality between k-planes in Hn and (n − k − 1)-planes in (Hn)∗ to
transfer certain standard constructions from hyperbolic space to de Sitter space
(this also motivates our unusual notation (Hn)∗).

In light of the above discussion, we will be considering families of (G,X)-
manifolds with G = SO0(n, 1), the identity component of O(n, 1). This group is si-
multaneously isomorphic to the group Isom+(Hn) of orientation-preserving isome-
tries of Hn, the group Möb+(Sn−1) of orientation-preserving Möbius transforma-
tions of Sn−1, and the group Isom+

↑ (Sn1 ) of orientation-preserving, orthochronous
isometries of Sn1 . Corresponding to these three identifications, we have the follow-
ing examples of (G,X)-structures on an orientable n-manifold:
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• A hyperbolic structure is an (SO0(n, 1),Hn)-structure. The existence of a
hyperbolic structure on an orientable n-manifold is equivalent to the existence
of a Riemannian metric of constant negative curvature.

• A flat conformal structure is an (SO0(n + 1, 1),Sn) structure. In dimension
two this is simply the classical notion of a projective or CP 1-structure on a
Riemann surface. For n ≥ 3, recall Liouville’s Theorem which states that a
conformal homeomorphism of domains in Sn is the restriction of a Möbius
transformation. It follows that a flat conformal structure is equivalent to a
(locally) conformally flat Riemannian metric [27], [34].

• A de Sitter structure is an (SO0(n, 1),Sn1 )-structure. With this terminology,
a de Sitter spacetime is exactly the same as a n-manifold with a de Sitter
structure.

We will use the abbreviations Hn(M), C(M), and Sn1 (M) for the respective de-
formation spaces T(G,X)(M) of hyperbolic, flat conformal, and de Sitter structures
on an n-manifold M .
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CHAPTER 3

Elementary Causality

A C1 submanifold of a Lorentz manifold is spacelike (resp. null, timelike,
causal) if all its tangent vectors are spacelike (resp. null, timelike, causal). Of
course, only one-dimensional submanifolds can be null, timelike, or causal; we
therefore define a submanifold to be Lorentzian (resp. degenerate) if the induced
metric is everywhere Lorentzian (resp. degenerate). Recall that we have assumed
all spacetimes to be time-oriented, so any causal curve is either future-pointing or
past-pointing.

LetM be a spacetime, and consider a point x ∈M. Define I+(x) to be the set
of points p ∈ M such that there exists a non-trivial past-pointing timelike curve
from p to x (whenM = Sn1 , this definition works equally well for points x ∈ ∂−∞Sn1 ).
If Σ is a subset ofM, let I+(Σ) = ∪x∈ΣI

+(x). The set I+(Σ) is clearly open, and is
called the chronological future of Σ in M. The chronological past I−(x) is defined
by replacing “past-pointing” with “future-pointing” in the definition of I+(x);
similarly, define I−(Σ) = ∪x∈ΣI

−(x). The future domain of dependence D+(Σ) is
defined to be the set of points p ∈ M such that every inextendible past-pointing
causal curve starting at p intersects Σ. The future Cauchy horizon is given by

H+(Σ) = D+(Σ) \D+(Σ). (3.1)

The sets D−(Σ) and H−(Σ) are defined analogously. We say Σ is achronal (resp.
acausal) if no timelike (resp. causal) curve intersects Σ more than once. A (topo-
logical) hypersurface Σ in a spacetime is a subset which can be covered by charts
{φα : Uα → Rn} which map the pairs (Uα, Uα∩Σ) homeomorphically to (Rn,Rn−1).
We remark that a closed achronal hypersurface Σ is necessarily edgeless; i.e. for
each x ∈ Σ, there is a neighborhood U of x such that every timelike curve in
U joining points of I+(x) and I−(x) must meet Σ. Finally, Σ is called a global
Cauchy hypersurface for M if it is a closed, spacelike, acausal hypersurface, and
M = D+(Σ) ∪D−(Σ); when such a hypersurface exists M is said to be a domain
of dependence.

Lemma 3.1 [41, Ch. 14, Lemma 43] If Σ is a closed acausal hypersurface, then
D+(Σ) ∪D−(Σ) is open.

If we are given a closed, spacelike, acausal hypersurface Σ ⊂M, then to show
Σ is a global Cauchy hypersurface for M it suffices by this lemma to show that
H+(Σ) = H−(Σ) = ∅. Showing that the Cauchy horizons vanish is facilitated by
the following elementary characterization of H+(Σ), which may be assembled from
the standard references (e.g. chapter 6 of [20] and chapter 14 of [41]).

6



Lemma 3.2 Suppose Σ is a closed acausal hypersurface. Then if H+(Σ) is non-
empty, it is a closed achronal C0,1 hypersurface disjoint from Σ. Furthermore, a
point x is in H+(Σ) if and only if the following two conditions hold:

• every inextendible past-pointing timelike curve starting at x intersects Σ;

• there exists an inextendible past-pointing null geodesic ray starting at x which
lies entirely within H+(Σ).

Here and in what follows, our results are stated for the future Cauchy horizon
H+(Σ), the statements for H−(Σ) being completely analogous. The null geodesic
rays given by Lemma 3.2 are called the null generators of H+(Σ).

We will now specialize the discussion of causality to the special case of hy-
persurfaces in constant curvature spacetimes. A spacelike de Sitter hypersurface
is a compact, oriented, smooth n-manifold Σ without boundary, equipped with a
based (SO0(n + 1, 1),Sn+11 )-structure (f, φ) such that f is a spacelike immersion;
it follows that Σ inherits a well-defined complete Riemannian metric. Similarly
there are notions of spacelike flat hypersurface and spacelike anti-de Sitter hyper-
surface. Given a spacelike de Sitter hypersurface Σ, let M = Σ × (0,∞) and
define D(Σ) ⊆ Sn+11 (M) to be the set of all de Sitter structures on M such that
there exists an isometric embedding of Σ as a global Cauchy hypersurface for M.
The set D(Σ) is non-empty and partially ordered by inclusion, hence by Zorn’s
lemma there is a maximal element Mmax(Σ). From the existence of the develop-
ing map, one sees that the “germ of extensions” is unique; i.e. for any two elements
M1,M2 ∈ D(Σ) there existM3 ∈ D(Σ) and isometric embeddings ofM3 in both
M1 and M2. Using this fact and an argument of Choquet-Bruhat and Geroch
([4],[20, Ch. 7]), one can show that every element of D(Σ) isometrically embeds in
Mmax(Σ) (compare [1, §1.6]). We identify Σ with its image in Mmax(Σ). Again,
a similar construction works for the flat and anti-de Sitter cases. The spacetime
Mmax(Σ) is called the maximal domain of dependence for Σ; it is homeomorphic
to Σ× R using the result of Geroch cited in the introduction.

Proposition 3.3 Suppose Σ is a simply-connected spacelike de Sitter (resp. flat,
anti-de Sitter) hypersurface. Then Mmax(Σ) is either future complete or else em-
beds in a de Sitter (resp. flat, anti-de Sitter) spacetime in which the following
conditions hold:

1. H+(Σ) is non-empty;

2. Every null generator of H+(Σ) is past complete;

3. Every null generator is either future complete or contains a future endpoint.

7



Proof: Let X = Sn+11 ,Rn+1
1 , or Hn+1

1 as appropriate, and let dev :Mmax(Σ)→ X
denote the developing map (here we have used the fact that Mmax(Σ) ≈ Σ × R
is simply-connected). Define an equivalence relation on the set of inextendible
future-pointing timelike curves in Mmax(Σ) by declaring λ1 ∼ λ2 if and only if
I−(λ1) = I−(λ2). Let H denote the set of equivalence classes of future-incomplete
inextendible timelike curves in Mmax(Σ), and let M′ = Mmax(Σ) ∪H. There is
an obvious extension of dev to M′ which sends an equivalence class of curves to
the common future endpoint of their developing images. We define a topology on
M′ for which a typical basis element Uλ,x containing the equivalence class [λ] ∈ H
is obtained by choosing a point x lying on λ and setting

Uλ,x = I+(x) ∪ {[λ′] ∈ H | some representative λ′ ⊂ I+(x)}. (3.2)

The extension of dev to M′ is continuous with respect to this topology. In this
way, we induce causal relations between points in M′; because Mmax(Σ) is the
maximal domain of dependence, H+(Σ) = H. The argument for Proposition 3.2
which shows that the Cauchy horizon is a closed achronal hypersurface works here
as well, and we conclude thatM′ is a constant curvature spacetime with boundary
H+(Σ). For the remainder of the proof we will work in the enlarged manifoldM′.

Consider an arbitrary point x ∈ H+(Σ) lying on a null generator λ. Let
{βj} be a sequence of inextendible past-pointing timelike curves starting at x and
approaching λ. Suppose λ is past incomplete, and let p ∈ X be the past endpoint
of dev(λ). It follows that only finitely many of the curves dev(βj) enter I

−(p), or
else we could construct a timelike curve back in M′ corresponding to the missing
endpoint of λ. Thus infinitely many of the dev(βj) meet dev(Σ) before reaching
I−(p); this contradicts the completeness of Σ.

Consider a sequence of points xj which lie on a null generator for H+(Σ) such
that xj is to the past of xj+1, and suppose dev(xj)→ p. Take a past-pointing time-
like segment from each point xj, so that the endpoints form a timelike-separated
sequence {zj} in Mmax(Σ) and dev(zj) → p. These points can be joined by a
future-pointing timelike curve whose equivalence class is the limit of the xj. We
conclude that the null generators are closed sets and (3) follows.

WhenMmax(Σ) fails to be future complete, the spacetime given by Proposition
3.3 will be denoted Mmax(Σ). If Mmax(Σ) is future complete, we simply set
Mmax(Σ) =Mmax(Σ).

It should be remarked that much of the discussion above can be simplified in the
flat and anti-de Sitter cases. It is quite easy to prove, for instance, that an edgeless,
spacelike immersion of an (n − 1)-manifold into Rn

1 or Hn
1 is in fact an achronal

embedding. This is far from true for spacelike de Sitter hypersurfaces however, and
presents the main difficulty in studying the global structure of de Sitter spacetimes.

Next, we recall some terminology which will arise repeatedly in our discussion
of the de Sitter/hyperbolic duality. A subset of Sn is an open round ball if it is the

8
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Figure 3.1: The figure on the left illustrates the proof of Proposition 3.4 in the
case n = 3 on the two-sphere at past infinity ∂−∞S31; the figure on the right is the
corresponding picture inside S31.

image of an open hemisphere under a Möbius transformation. A round (n − 1)-
sphere in Sn is the boundary of an open round ball. Recall that a point in Sn1
projects to (Hn)∗ and is therefore dual to a hyperplane in Hn; this in turn defines
a round (n− 2)-sphere and two complementary open round balls on the sphere at
infinity. The following trivial piece of information provides a key element in our
later development.

Proposition 3.4 Let λ be a past complete null ray in Sn1 , Rn
1 , or Hn

1 . Then there
is a unique degenerate hyperplane N containing λ and I+(λ) = I+(N).

Proof: Consider first the case when λ ⊂ Rn
1 ; without loss of generality we may

assume λ is a line through the origin in the direction of some vector n ∈ Rn
1 . Let

N = n⊥; that is, the subspace

n⊥ = {v ∈ Rn
1 | 〈n,v〉 = 0}. (3.3)

It follows easily that N is the unique degenerate hyperplane containing λ. Also
note that N is foliated by the collection of null lines parallel to λ. Clearly I+(λ) ⊆
I+(N); for the converse, consider a point w ∈ I+(N). The past-pointing null
cone ∂I−(w) intersects the hyperplane N in a paraboloid whose axis of symmetry
is parallel with λ, hence each of the null lines foliating N intersects I−(w) (in
particular, λ does). Thus w ∈ I+(λ).

9



In de Sitter space Sn1 , the degenerate k-planes are precisely the intersections
with Sn1 of the degenerate (k + 1)-planes through the origin in Rn+1

1 . Using this
remark, the result for de Sitter space follows easily. A similar proof works for
anti-de Sitter space.

Alternatively, we can give an argument for Sn1 which emphasizes the duality
with hyperbolic space. Take a point p ∈ I+(N) ⊂ Sn1 and let x be the future
starting point of λ. The ray λ meets past infinity at a point z ∈ ∂−∞Sn1 ; the unique
degenerate hyperplane N containing λ is the union of all null rays converging to z.
The points p and x correspond to round (n− 2)-spheres p∗ and x∗ such that z lies
on x∗, while p∗ misses z. For simplicity, given a round (n− 2)-sphere C∗ ⊂ ∂−∞Sn1
dual to a specific choice of C ∈ Sn1 , we will refer to the component of ∂−∞Sn1 \ C∗

corresponding to I−(C) as the “interior” of C∗; in particular z is in the interior
of p∗. We see immediately that there exists a open round ball b∗ tangent to x∗

at z which is contained entirely within the interior of both x∗ and p∗. Interpreted
in Sn1 , this means that there exists a point b lying on λ (since λ is past complete)
which can be reached from p by a past-pointing timelike curve, hence p ∈ I+(λ).

10



CHAPTER 4

The Canonical Stratification and Metric

Throughout this chapter, we let Σ denote a compact, connected n-dimensional
manifold without boundary. Let D∞ : Σ̃→ Sn be a developing map and φ a holon-
omy representation for a flat conformal structure on Σ. A construction originally
due to Thurston (unpublished, see [23] however) and extended by Kulkarni-Pinkall
[28, 29] produces a canonical decomposition of Σ with respect to this structure.
This technique will be used to construct families of hyperbolic and de Sitter struc-
tures on Σ× (0,∞) parameterized by C(Σ).

We begin by using D∞ to pull back the usual metric on Sn to a metric on Σ̃,

and considering the metric space completion Σ̃ of Σ̃. There is a unique continuous

extension D∞ : Σ̃→ Sn of D∞. A subset U ⊂ Σ̃ is an open round ball if D∞ maps
U homeomorphically onto an open round ball in Sn. Given an open round ball

U in Σ̃, the closure U in Σ̃ maps homeomorphically to a closed round ball in Sn,
hence U is conformally equivalent to compactified hyperbolic space Hn ∪ ∂∞Hn.
We may therefore transfer the usual notion of “hyperbolic convex hull” to U ; let
U∞ = U \ Σ̃ and let C(U) denote the intersection of U and the convex hull of U∞

in U (note that C(U) = ∅ if and only if U∞ has fewer than two points).

Proposition 4.1 Exactly one of the following holds:

1. Σ̃ ∼= Sn with the obvious flat conformal structure;

2. Σ̃ ∼= En = Sn \ {∞};
3. For every p ∈ Σ̃, there exists a unique open round ball Up such that p ∈ C(Up).

Proof: Fix p ∈ Σ̃, and let Wp be the union of all open round balls containing p
(this set is non-empty because D∞ is a local diffeomorphism). One checks easily
that the restriction ofD∞ toWp is injective, becauseD∞ is injective on the union of
any two open round balls meeting in a “spherical lens”. Let F = Sn\D∞(Wp); this
set is the intersection of closed round balls in Sn, and is therefore a closed convex
set. Suppose F has fewer than two points. Then Wp is conformally equivalent to
either Sn or En, and if the dimension of Σ̃ is at least two it follows that Σ̃ = Wp

∼=
Sn or En (in the one-dimensional case, we obtain the same conclusion without
necessarily having Σ̃ = Wp). We shall assume therefore that F has at least two
points and without loss of generality that D∞(p) =∞ ∈ Sn, so we can view F as
a subset of En = Sn \ {∞}. Hence there exists a unique closed round ball B of
least radius containing F ; since D∞ is injective on Wp, the set Up = D−1

∞ (Sn \ B)
is an open round ball in Σ̃. We claim p ∈ C(Up).

11



By tracing through the definitions, we have that D∞((Up)∞) = F ∩ ∂B and
so p ∈ C(Up) if and only if D∞(p) is in the convex hull of F ∩ ∂B (taken in the
complement of B). By inversion in ∂B, this in turn is equivalent to the Euclidean
center of B lying in the convex hull of F ∩ ∂B (taken in B). If this failed to hold
however, one could construct a closed round ball of lesser radius containing F .

Uniqueness of Up is clear, the cogent remark being that for any pair of open
round balls U1 and U2 in Sn, the convex hull of ∂U1 \U2 in U1 and the convex hull
of ∂U2 \ U1 in U2 must be disjoint.

The flat conformal structure is said to be of elliptic type, parabolic type, or
hyperbolic type, depending on whether (1), (2), or (3) holds in the statement of
Proposition 4.1. In the case of hyperbolic type, the decomposition Σ̃ =

⋃

p∈Σ̃C(Up)

is called the canonical stratification of Σ̃; each C(Up) is a called a stratum. The set
of strata is written S; we will provide S with a canonical metric space structure
in a later chapter. Note finally that this decomposition is equivariant with respect
to the action of π1(Σ) on Σ̃, and so there is an induced stratification of Σ.

An open round ball U in Σ̃ has a well-defined Riemannian metric pulled back
from the Poincaré metric on D∞(U) and denoted gU . Define a metric on all of Σ̃
by g = gUp

∣

∣

C(Up)
; it is shown in [29] that g is a complete C1,1 Riemannian metric,

with almost-everywhere-defined sectional curvatures in the interval [−1, 1]. Each
stratum in the canonical stratification is totally geodesic with respect to g. Again,
the construction of g is equivariant and therefore induces a Riemannian metric on
Σ with the same properties. When the dimension of Σ is two, this metric can be
used to obtain a complete hyperbolic structure on Σ, and the space of strata yields
a measured geodesic lamination. This case is discussed in more detail in §9 below.
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CHAPTER 5

Examples of Flat Conformal Structures

There is a large body of literature concerning flat conformal structures, par-
ticularly in the classical case of CP 1-structures on surfaces. We will now present
some examples indicating the wide variety of behavior one can expect.
Example 1: Consider Sn with its trivial flat conformal structure, and suppose
Sk ⊂ Sn is a round k-sphere for some k = 0, . . . , n−1. Then Sn \Sk also (trivially)
admits a flat conformal structure, and when equipped with the canonical metric
constructed in §4, is isometric to Hk+1 × Sn−k−1. In particular, when k = 0 (and
passing to the universal cover if in addition n = 2), we obtain the n-dimensional
simply-connected Hopf manifold. If Σ is an n-manifold with a flat conformal struc-
ture, and the lifted flat conformal structure on Σ̃ is induced by an embedding of
Σ̃ into the simply-connected n-dimensional Hopf manifold, we will say Σ is a Hopf
manifold. The classical examples come from the quotient of an invariant subset of
Sn \ {0,∞} under the action of a loxodromic element in SO0(n+1, 1) fixing 0 and
∞. When n = 2 and there is no rotational component of the loxodromic, these
spaces are known as θ-annuli, where θ refers to the width of the invariant region

of ˜S2 \ {0,∞} in question. A closed manifold with a flat conformal structure of
hyperbolic type and abelian holonomy must be a Hopf manifold [34].

Another important class of examples arises when k = n − 2; these are the
so-called Mercator manifolds. Mercator manifolds typically arise after performing
Thurston’s “bending deformation” along a totally geodesic hypersurface in a closed
hyperbolic n-manifold (see [29]). Note that when n = 2, this notion coincides
precisely with the notion of a Hopf manifold.

Example 2: Given a Fuchsian representation φ : π1(Σ) → SO0(3, 1), there is
a natural CP 1-structure on Σ with developing map D∞ carrying Σ̃ homeomor-
phically to a φ-invariant disk in S2. Goldman [15] has shown in general that the
CP 1-structures with Fuchsian holonomy correspond under Thurston’s parameter-
ization (§9) to “integer points” of ML(Σ), i.e. to finite collections of simple closed
geodesics with transverse measures which are integer multiples of 2π. Such struc-
tures give the simplest examples of geometric structures for which the developing
map is not a covering of its image. Examples of this kind first appeared (in various
contexts) in papers by Maskit [33], Hejhal [22], Faltings [8], and Sullivan-Thurston
[44].

Example 3: Suppose now that φ : π1(Σ) → PSL(2,C) is a quasi-Fuchsian
representation, and that D∞ maps Σ̃ homeomorphically to an invariant topological
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disk ∆. In this case, the measured lamination associated to the CP 1-structure
resides on a boundary component of the convex hull of the quasi-Fuchsian limit
set. Note that the Poincaré metric on ∆/φ(π1(Σ)) is not necessarily the same as
the canonical metric coming from the flat conformal structure. Sullivan has shown,
however, that these metrics are K-quasi-isometric for a constant K independent
of φ ([6], [43]). This remarkable fact is intimately related to the existence of
hyperbolic structures on 3-manifolds fibering over S1 [46].

Example 4: In addition to Thurston’s parameterization of CP 1-structures, there
is a well-known analytic parameterization by holomorphic quadratic differentials.
Suppose Σ is a closed orientable surface with a fixed uniformization Σ ∼= H2/Γ.
Given a CP 1-structure (D,φ) on Σ, let ψ denote the Schwarzian derivative of D:

ψ = (D′′/D′)′ −
1

2
(D′′/D′)2. (5.1)

The φ-equivariance of D is equivalent to the property that for each z ∈ H2 and
each γ ∈ Γ

ψ(z) = (ψ ◦ γ(z))(γ ′(z))2, (5.2)

i.e. ψ(z)dz2 represents a holomorphic quadratic differential on Σ. Conversely,
every holomorphic quadratic differential arises in this way, and hence we obtain a
parameterization of the space of CP 1-structures on a fixed Riemann surface. See
[19] and the references cited therein concerning this approach.

Example 5: The holonomy representation need not be as nicely behaved as
in the previous examples. In fact, it has been shown that any homomorphism
φ : π1(Σ) → PSL(2,C) which lifts to SL(2,C) and has non-elementary image
is realized as the holonomy representation of some CP 1-structure, and therefore,
as we shall see, of some standard de Sitter spacetime as well. Gallo originally
announced a proof of this fact in [10]; the details have only recently appeared in
[25] and [11].

Example 6: The question of which higher-dimensional manifolds admit flat
conformal structures remains open despite significant progress over the last twenty
years, particularly in dimension three. Thurston’s hyperbolization theorem [36] is
the most powerful positive result, showing that a vast collection of compact three-
manifolds admit hyperbolic structures and therefore flat conformal structures. It
is conjectured in [18] that a circle bundle M over a closed surface Σ admits a flat
conformal structure if and only if the Euler number e(M) satisfies:

|e(M)| ≤ |χ(Σ)| (5.3)

This has been verified in the case χ(Σ) = 0 by Goldman [13], while the first known
examples with e(M) 6= 0 appeared simultaneously in [18] and in the work of M.
Kapovich (surveyed in [24]). Finally we remark that Kulkarni-Pinkall [28] have
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given methods for gluing flat conformal structures along boundary components
under certain hypotheses, greatly expanding the body of known examples.
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CHAPTER 6

Standard de Sitter Spacetimes

A C1 path α : [0, 1]→M in a spacetime M has length defined by

L(α) =

∫

α

|〈α̇, α̇〉|
1

2 (6.1)

An admissible spacelike partition (resp. timelike, causal) for a continuous path
α : [0, 1] → M is a finite partition 0 = t0 < t1 < · · · < tk−1 < tk = 1 such
that for every j ∈ 0, . . . , k − 1, the points α(tj) and α(tj+1) can be joined by
a spacelike (resp. timelike, causal) segment [α(tj), α(tj+1)] in a convex normal
neighborhood of α(tj). A continuous path α : [0, 1] → M is said to be spacelike
(resp. timelike, causal) if it has arbitrarily fine admissible spacelike (resp. timelike,
causal) partitions (this generalizes the notion for differentiable paths given in §3).
When this is the case, we can define the length of such a path as an infimum over
all admissible partitions of the appropriate type:

L(α) = inf{L[α(t0), α(t1)] + · · ·+ L[α(tk−1), α(tk)]}. (6.2)

Note that it makes sense to define the length using the infimum versus the supre-
mum, because L satisfies the reverse triangle inequality, so refining a partition
reduces the sum in (6.2).

The timelike separation of points x, y ∈M is defined to be:

τ(x, y) = sup{L(α) | α is a causal curve joining x and y} (6.3)

If there are no causal curves joining x and y, then we set τ(x, y) = 0. One verifies
easily that τ is symmetric and also satisfies the reverse triangle inequality.

When M = Sn1 , we can reinterpret these length measurements in terms of
the dual hyperplanes in Hn. Points which are spacelike-separated correspond to
intersecting hyperplanes, and the length of the shortest segment between them
is precisely the dihedral angle between the hyperplanes. Similarly, points which
are timelike-separated correspond to disjoint, non-asymptotic hyperplanes and τ
is simply the minimum hyperbolic distance between the hyperplanes (recall this is
the length of the unique common perpendicular).

For each x ∈ ∂+Sn1 fix a future-pointing timelike geodesic c with arclength
parameter which converges to x and define the timelike horofunction τ x : I−(x)→
(0,∞) by:

τx(y) = lim
t→∞

τ(y, c(t))− t. (6.4)
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Using the reverse triangle inequality, the expression on the right-hand side in-
creases in t and is bounded above, so the limit exists. The function so-defined is
independent of the choice of c up to an additive constant.

Now let Σ denote a compact n-manifold without boundary, with a fixed flat
conformal structure (D∞, φ) ∈ C(Σ) of hyperbolic type, and space of strata S in Σ̃.
We start the construction of the standard de Sitter spacetimes by defining a map
D∗
0 : S → (Hn+1)

∗
. Recall that each stratum s ∈ S corresponds to a unique open

round ball U ⊂ Σ̃; the set ∂D∞(U) bounds a hyperplane in Hn+1 which determines
the desired point D∗

0(s) in (Hn+1)
∗
. Clearly nearby pairs of points in the image

of this map are spacelike-separated, for if not, the open round ball corresponding
to one of the points would be contained in the interior of the other (with perhaps
one common boundary point) – this is impossible if each open round ball defines a
non-empty stratum. It follows that any path in S maps to a continuous spacelike
path in de Sitter space, and therefore has an induced length. This defines a metric
space structure on S.

Next note that there is a canonical map from Σ̃ to S, given by p 7→ C(Up);
the composition with D∗

0 defines a map of Σ̃ into (Hn+1)
∗
, which by abuse of

notation we again denote D∗
0. Define a map D∗ : Σ̃× (0,∞)→ (Hn+1)

∗
by sending

(p, t) to the point on the unique timelike ray from D∗
0(p) to D∞(p) satisfying

τ(D∗
0(p), D

∗(p, t)) = t. This map can be lifted to Sn+11 in such a way that as
t→∞ the image approaches past infinity; we also write D∗ for the lifted map.

If Σ is of parabolic type and x ∈ Sn is the point missed by D∞, then we can
define D∗ : Σ̃× (0,∞)→ Sn+11 by sending (p, t) to the point on the unique timelike
ray from x ∈ ∂+∞Sn+11 to D∞(p) ∈ ∂−∞Sn+11 satisfying τx(D

∗(p, t)) = − log t (since τ
is only well-defined up to an additive constant, D∗ in this case is well-defined up
to a multiplicative rescaling of (0,∞)).

Finally, if Σ is of elliptic type, then we use the homeomorphism of Sn+11 with
Sn × R (coming from its embedding in Rn+2

1 ) to define D∗; as above we simply
rescale (0,∞) by t 7→ − log t.

By yet another abuse of notation, the composition π1(Σ× (0,∞)) ∼= π1(Σ)
φ
→

SO0(n, 1) will also be denoted φ.

Proposition 6.1 The pair (D∗, φ) defines a de Sitter structure on Σ × (0,∞)
which is past complete. For every t ∈ (0,∞), the slice Σ× {t} is a global Cauchy
hypersurface.

Proof: We will first show that D∗ is a φ-equivariant C1 immersion. This is
clear in the elliptic and parabolic cases; we may therefore restrict our attention
to the case that Σ is of hyperbolic type. It has already been remarked that the
canonical stratification is equivariant, so given γ ∈ π1(Σ) and p ∈ Σ̃, we have
C(Uγ·p) = γ · C(Up). The φ-equivariance of D∞ then implies that D∗

0 and hence
D∗ are also φ-equivariant. The differentiability of D∗ can be proven by adapting
the dual argument of Bowditch found in [6].
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The proof that each slice is a global Cauchy hypersurface requires no further
mention of the specific de Sitter structure involved. A slice Σ × {t0} is a closed
spacelike hypersurface by construction, and is clearly acausal since it is spacelike
and separates Σ× (0,∞). By Lemma 3.1, D+(Σ× {t0}) ∪D

−(Σ× {t0}) is open,
so it suffices to show that this set is also closed. We will show H+(Σ × {t0}) =
H−(Σ × {t0}) = ∅. In light of Lemma 3.2, let β be a null geodesic and define
L = {t ∈ (0,∞) | β ∩ (Σ × {t}) 6= ∅}. This set is non-empty and clearly open
because each slice is spacelike and β is a null curve. Suppose {tj} is a sequence of
points in L converging to some value t ∈ (0,∞); then by compactness of the slices,
there is some point z ∈ Σ×{t} such that β enters arbitrarily small convex normal
neighborhoods of z. Again using the fact that the slices are spacelike, this forces
β to intersect Σ × {t}, and so L is closed. We conclude L = (0,∞), finishing the
proof.

Proposition 6.1 provides a well-defined map Ω+ : C(Σ)→ Sn+11 (Σ×(0,∞)). By
reversing the time-orientations in each case (e.g. in the hyperbolic case, choosing
the other possible lift of D∗ from (Hn+1)

∗
to Sn+11 ), we obtain a second family of

de Sitter structures and a map Ω− : C(Σ) → Sn+11 (Σ × (0,∞)). We say M is a
standard de Sitter spacetime ifM≈ Σ×(0,∞) andM is equipped with a de Sitter
structure in Ω+(C(Σ)) ∪ Ω−(C(Σ)). In this case, Proposition 6.1 also shows that
for every t ∈ (0,∞), the slice Σ × {t} is a spacelike de Sitter hypersurface in the
sense of §3. By construction, it is also clear that Mmax(Σ × {t}) = Σ × (0,∞).
A standard de Sitter spacetime is said to be hyperbolic (resp. parabolic, elliptic)
if it comes from a flat conformal structure of hyperbolic (resp. parabolic, elliptic)
type.
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CHAPTER 7

Convexity Properties

Recall that a spacelike or timelike geodesic in a Lorentz manifold may be pa-
rameterized in proportion to arclength in the usual way, while a natural choice
of parameter for a null geodesic only exists up to an affine change of coordinates.
The following lemma is the dual of an analogous statement for hyperbolic space;
the proof itself is precisely dual to the one given by Douady in [5] for geodesics in
H2.

Lemma 7.1 Suppose α : [0, 1] → Sn1 and β : [0, 1] → Sn1 are spacelike or null
segments with arclength or affine parameterizations such that for all t ∈ [0, 1] we
have τ(αt, βt) > 0. Then the function t 7→ −τ(αt, βt) is strictly convex.

Proof: We view all points of Sn1 as totally geodesic hyperplanes in Hn. With
this in mind, define σα ∈ O(n, 1) to be the reflection in the hyperplane α 1

2

; this
isometry interchanges α0 and α1. Define σβ similarly, and let δ be the common
perpendicular geodesic to α 1

2

and β 1

2

. Note that δ is invariant under both σα and

σβ, hence also under σβσα. The critical remark is that the function τ(−, σβσα−) on
de Sitter space achieves its minimum precisely on those hyperplanes perpendicular
to δ (equivalently, on the (n− 2)-plane in de Sitter space dual to δ). Thus:

τ(α1, β1) + τ(α0, β0) = τ(α1, β1) + τ(σαα1, σββ1)

= τ(α1, β1) + τ(σβσαα1, β1)

≤ τ(α1, σβσαα1)

< τ(α 1

2

, σβσαα 1

2

)

= τ(α 1

2

, σβα 1

2

)

= τ(α 1

2

, β 1

2

) + τ(β 1

2

, σβα 1

2

)

= 2τ(α 1

2

, β 1

2

).

(7.1)
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A hypersurface Σ in a de Sitter spacetime is locally convex from the future
if at every point x ∈ Σ there is a null or spacelike support plane such that a
neighborhood of x in Σ lies on or in the past of the support plane. Similarly, Σ
is locally strictly convex from the future if the support planes meet Σ locally in a
single point. The application of Lemma 7.1 which we will need is the following:

Proposition 7.2 Let Σ be a spacelike de Sitter hypersurface identified with its
image in Mmax(Σ). Suppose that H+(Σ̃) ⊂ Mmax(Σ̃) is non-empty and locally
convex from the future, with degenerate support planes corresponding to the null
generators of H+(Σ̃). Then a neighborhood in the past of H+(Σ̃) is foliated by
global Cauchy hypersurfaces for Mmax(Σ̃) which are locally strictly convex from
the future and which project to global Cauchy hypersurfaces for Mmax(Σ).

Proof: We begin by assuming that Σ is simply-connected, and so H+(Σ) has
the properties guaranteed by Proposition 3.3. Define the time-to-horizon function
τH+ : D+(Σ)→ (0,+∞] by setting

τH+(x) = sup{τ(x, y) | y ∈ H+(Σ)}. (7.2)

We claim that if τH+(x) = +∞ at any point x ∈ D+(Σ), then τH+ ≡ +∞ on all of
D+(Σ). The set of points where τH+ equals infinity is clearly open, so consider a
point x0 such that τH+(x0) < +∞. The future-pointing timelike rays from x0 all
meet H+(Σ) in finite time, so by the local convexity of H+(Σ) the same holds for
the future-pointing null rays from x0. There exist local spacelike or null support
planes at these intersection points, which extend slightly outside of I+(x0). This
forces τH+ < +∞ on a neighborhood of x0, proving the claim.

So now suppose τH+ ≡ +∞ on all of D+(Σ). It follows that every null generator
of H+(Σ) is future complete; for if some null generator λ had a future endpoint
p ∈ H+(Σ), then we could find a spacelike local support plane at p, which would
force points in a small enough neighborhood in the past of p to satisfy τH+ < +∞.
These points lie in D+(Σ) however, a contradiction. Given a future complete null
generator λ, let N be the unique degenerate hyperplane containing dev(λ); this
is a future local support plane for the image of H+(Σ) by hypothesis. But if a
point of H+(Σ) near λ develops to the past of N , we can apply the time reverse
of Proposition 3.4 to see I−(N) = I−(dev(λ)). Thus we can find a past-pointing
timelike curve inM joining two points of H+(Σ); this contradicts the achronality
of H+(Σ). We conclude that the entire connected component of H+(Σ) containing
λ develops into N , and so we can take as our global Cauchy hypersurfaces the level
sets of a timelike horofunction for the future endpoint z of dev(λ) on ∂+∞Sn1 . One
checks easily that these surfaces are locally strictly convex from the future (they
are, in fact, dual to the horospheres based at z ∈ ∂∞Hn, which are clearly strictly
convex).

Finally, we may assume that τH+ < +∞ on all of D+(Σ). In this case there is a
continuous “farthest-point retraction” r : D+(Σ)→ H+(Σ); the proofs of existence
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and continuity are dual to the analogous proofs for hyperbolic space which can be
found in [6]. We claim that the level sets τ−1

H+(t) for small values of t foliate a
neighborhood in the past of H+(Σ) and are locally strictly convex from the future.

Take x 6= y to be two points in τH+
−1[ε,+∞) which are spacelike-separated

and close enough so that r(x) and r(y) lie in a locally convex neighborhood on
H+(Σ). Let α : [0, 1] → Sn1 be a spacelike segment joining x to y, with arclength
parameter. Similarly, let β be a (possibly null) segment joining r(x) to r(y). It
follows from Lemma 7.1 that

ε ≤
1

2
(τ(α(0), β(0)) + τ(α(1), β(1))) < τ(α(

1

2
), β(

1

2
)); (7.3)

therefore if β( 1
2
) ∈ H+(Σ) we are done, otherwise continue the future pointing

segment from α(1
2
) through β(1

2
) to H+(Σ) to complete the proof for Σ simply-

connected.
Finally, when Σ is not simply-connected, we perform the construction above

for Σ̃ and note that each step is equivariant with respect to the covering transfor-
mations.

Proposition 7.3 If Σ × (0,∞) is a hyperbolic or parabolic standard de Sitter
spacetime, then for every t ∈ (0,∞) the slice Σ× {t} is locally strictly convex.

Proof: It was noted in the proof of Proposition 7.2 that the slices in a parabolic
standard de Sitter spacetime are dual to horospheres in hyperbolic space and are
therefore locally strictly convex. Suppose therefore that Σ× (0,∞) is a hyperbolic
standard de Sitter spacetime, and fix t ∈ (0,∞).

It was remarked above thatMmax(Σ×{t}) = Σ× (0,∞); The Cauchy horizon
H+(Σ̃ × {t}) in Mmax(Σ̃ × {t}) is in one-to-one correspondence with the set of
open round balls U ⊂ Σ̃ such that U∞ 6= ∅. One sees that H+(Σ̃×{t}) satisfies the
hypotheses of Proposition 7.2 in the following manner. Let U be an open round
ball with p ∈ U∞; the failure of the local convexity property translates into the
existence of a nearby open round ball which contains p, contradicting the fact that
p ∈ U∞. The proposition is then a corollary of the previous proof, as the locally
strictly convex surfaces constructed there are precisely the hypersurfaces Σ̃ × {t}
of constant timelike separation t from H+(Σ̃× {t}).

We shall see, in fact, that the proof given above of the locally convexity of of
the Cauchy horizon for a standard de Sitter spacetime works quite generally; this
will allow us to obtain the Classification Theorem 1.1 in §11.
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CHAPTER 8

Pleated Surface Description

We will now consider the projective dual of the standard de Sitter spacetime
construction. We retain the notation of §6; namely, (D∗, φ) = Ω+(D∞, φ) ∈
Sn+11 (Σ× (0,∞)) is the structure corresponding to a hyperbolic or parabolic stan-
dard de Sitter spacetime. Fix a slice Σ̃ × {t0}. By Proposition 7.3, the image
of Σ̃ × {t0} under D∗ is locally strictly convex and spacelike, so each point has a
unique spacelike support plane, which in turn defines a pole in Hn+1. This gives a
dual immersion of Σ̃×{t0} onto a locally strictly convex surface in Hn+1. Proceed-
ing in this way for all t0 ∈ (0,∞), we obtain an immersion D : Σ̃× (0,∞)→ Hn+1

dual to D∗.
Alternatively, if the flat conformal structure is of hyperbolic type we can give

a more explicit geometric construction of the map D as follows: Fix p ∈ Σ̃ and
consider an open round ball U containing p. Thus Sn\D∞(U) is a round disk which
determines a closed half space in Hn+1; let Cp be the intersection of these half spaces
over all open round balls U containing p. Arguing as in the proof of Proposition
4.1, if Cp were empty it would follow that Σ is of elliptic or parabolic type; thus
in our case Cp is a closed, non-empty, convex set. Following Thurston, there is
a “nearest-point retraction” rp : Hn+1 → Cp [6]. Define a map D0 : Σ̃ → Hn+1

by p 7→ rp(D∞(p)). This map is continuous and its image is locally convex; the
hyperplane through D0(p) orthogonal to the geodesic ray from D0(p) to D∞(p) is
a local support plane. We can simultaneously extend both D0 and D∞ using the
map D : Σ̃× (0,∞) → Hn+1 which sends (p, t) to the point hyperbolic distance t
along the geodesic ray from D0(p) to D∞(p). The convexity and differentiability
properties of D are of a local nature and can be obtained either by dualizing and
comparing with D∗, or else by directly applying the results of [6, Ch. 1].

Proposition 8.1 The pair (D,φ) defines a hyperbolic structure on Σ × (0,∞).
For every t ∈ (0,∞), the slice Σ× {t} is locally strictly convex.

A k-pleat in Hn+1 is a k-dimensional subset of Hn+1 which is the convex hull
of some subset of ∂∞Hn+1. The dimension k may vary between 1 and n+ 1. The
following proposition is an immediate consequence of the definitions, and gives an
alternative description of the canonical metric in terms of the path metric in Hn+1.
More details are available in [29].

Proposition 8.2 Suppose Σ is a n-dimensional manifold equipped with a flat con-
formal structure of hyperbolic type, and let D0 : Σ̃ → Hn+1 be defined as above.
Then D0 maps each stratum in Σ̃ isometrically to a k-pleat in Hn+1.

22



CHAPTER 9

Bending Laminations and R-trees

We will now consider an interesting subclass of flat conformal structures which
includes the classical examples of CP 1-structures on surfaces. Namely, we say
that an n-manifold with a flat conformal structure of hyperbolic type is a channel
manifold if all the strata in its canonical stratification are of dimension n or n− 1.
For simplicity, we will restrict our discussion to the classical case when n = 2 (for
which the condition is automatically satisfied). The techniques of this section are
due entirely to Thurston.

Suppose for the remainder of this chapter that Σ is a closed orientable surface
of genus g at least two, with a flat conformal (CP 1) structure of hyperbolic type.
As usual, we write S for the space of strata.

Suppose that Σ has been given a Riemannian metric of constant curvature −1;
a (codimension-one) geodesic lamination on Σ is a (possibly empty) collection L of
geodesics whose union is a closed subset |L| of Σ. The elements of L are called the
leaves of L. A measured geodesic lamination is a pair (L, µ) consisting of a geodesic
lamination L and a transverse measure µ; that is, a function which assigns to each
embedding α : [0, 1]→ Σ transverse to the leaves of L a finite Borel measure µ(α)
on the image of α satisfying the following conditions:

1. If h : Σ→ Σ is isotopic to the identity via an isotopy which leaves invariant
every leaf of L, then µ(α) = h∗µ(h(α));

2. If β is a sub-path of α then µ(β) is the restriction of µ(α);

3. The support of µ(α) is precisely α([0, 1]) ∩ |L|.

Following Thurston, we shall write
∫

α
dµ for the transverse measure of a path α.

The space of all measured geodesic laminations on Σ is denoted ML(Σ).
Recall the notations of §6 and §8: From a given flat conformal structure

(D∞, φ) ∈ C(Σ) we constructed a φ-equivariant mapD0 : Σ̃→ Hn+1 and a de Sitter
structure (D∗, φ) = Ω+(D∞, φ) ∈ Sn+11 (Σ×(0,∞)). Kulkarni-Pinkall [29] show the
existence of a canonical “reduction” of Σ; that is, a new flat conformal structure
obtained by excising all embedded codimension-zero Mercator manifolds. Assume
for now that this reduction has been performed. Following [6], we use the map
D0 and the path metric in H3 to induce a complete hyperbolic metric on Σ; let g′

denote the point of Teichmüller space T (Σ) defined in this way. The set of one-
dimensional pleats in the image of D0 forms a geodesic lamination L with respect
the metric g′. Let L̃ denote the lifted geodesic lamination on Σ̃.
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We associate a natural transverse measure µ to L as follows. Suppose α :
[0, 1] → Σ̃ is an embedding transverse to the leaves of L̃, and suppose s, t ∈ [0, 1]
are such that α(s) and α(t) do not lie in |L̃|. Define ∠α(s, t) to be the dihedral
angle between the (unique) support planes at D0(α(s)) and D0(α(t)) and set

∫

α

dµ = inf{∠α(t0, t1) + · · ·+ ∠α(tn−1, tn)}, (9.1)

where the infimum is taken over all finite partitions 0 = t0 < t1 < · · · < tn−1 <
tn = 1 such that no α(tj) lies in |L̃|. When the flat conformal structure is not
assumed to be reduced, the associated geodesic lamination may contain isolated
leaves. The transverse measure across such a leaf is defined to be the “width” of the
corresponding Mercator manifold in Σ. We call the resulting measured geodesic
lamination (L, µ) the bending lamination associated to the channel manifold [1],
[6]. Thurston (unpublished) has shown that the map

Θ : C(Σ)→ T (Σ)×ML(Σ)

(D∞, φ) 7→ (g′, (L, µ))

(9.2)

is a bijection (in fact a homeomorphism with respect to appropriately defined
topologies); his proof is reconstructed in [23], while Labourie has obtained a com-
pletely different proof in [31]. Kulkarni-Pinkall [29] have obtained similar state-
ments in higher dimensions.

We will need the following useful description of the closed leaves in a bending
lamination:

Lemma 9.1 Given a measured geodesic lamination (L, µ) on Σ and a leaf λ ∈ L,
the following are equivalent:

1. λ is isolated

2. λ has positive transverse measure

3. λ is closed

Furthermore, if (L, µ) is a bending lamination, then the holonomy of a closed leaf
is infinite cyclic and purely hyperbolic.

Proof: It is clear that (1) implies (2) because the support of µ is all of |L|, and
(2) implies (3) or else there would be an embedded path with infinite transverse
measure near an accumulation point of λ. The argument of Lemma 4.6 of [3] shows
that if λ is closed, then it has a regular neighborhood N such that any leaf which
intersects N \λ is isolated and asymptotic to λ. We have shown on the other hand
that isolated leaves are closed, and so λ is the only leaf intersecting N .
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If λ is a closed leaf in a bending lamination and λ̃ is a lift to the universal
cover, then λ̃ maps homeomorphically onto a one-dimensional pleat in H3. Hence
the holonomy of λ is infinite cyclic, generated by a loxodromic element leaving the
pleat invariant. The complementary regions on either side are also invariant, so
the holonomy generator has no rotational component.

An arc in a topological space is a subspace homeomorphic to a compact interval
of R. An R-tree is a metric space Y such that for any x 6= y ∈ Y , there is a unique
arc A ⊆ Y with endpoints x and y, and A is isometric to a compact interval of R.

Given a measured geodesic lamination (L, µ) on Σ, and a lift (L̃, µ̃) on Σ̃, we let
C be the set of components of Σ̃\|L̃|. For c0 and c1 in C, choose points y0 ∈ c0 and
y1 ∈ c1, and consider the geodesic segment [y0, y1] between them. This segment is
transverse to the leaves of L̃, and clearly cannot cross a given leaf more than once.
Using the fact that |L̃| is nowhere dense in Σ̃ [3], [45, §8.5], an easy argument
verifies that the transverse measure

∫

[y0,y1]
dµ is independent of the choice of y0

and y1. Setting d(c0, c1) =
∫

[y0,y1]
dµ, it is again easily verified that d defines a

π1(Σ)-invariant metric on C.

Lemma 9.2 [40] There exist an R-tree T and an isometric embedding ψ : C ↪→ T
such that

1. The smallest subtree containing ψ(C) is T itself

2. Any t ∈ T \ ψ(C) separates T into exactly two components

3. The action of π1(Σ) on C extends (uniquely) to an isometric action on T

Furthermore, if (T, ψ) and (T ′, ψ′) both satisfy the conditions above, then there
exists a π1(Σ)-equivariant isometry ι : T → T ′ such that ι ◦ ψ = ψ′.

The R-tree given by Lemma 9.2 is called the dual tree to the measured geodesic
lamination (L, µ). A general development of the theory of R-trees and codimension-
one measured laminations is contained in a fundamental series of papers by Morgan
and Shalen [37, 38, 39].

The next proposition ties together the dual descriptions of the canonical strati-
fication by showing that the space of strata S is an R-tree, isometric to the abstract
dual tree T arising from the bending lamination in H3.

Proposition 9.3 Suppose Σ is a closed orientable surface of genus at least two,
with a flat conformal structure of hyperbolic type, space of strata S, and associ-
ated bending lamination (L, µ). Then S and the dual tree to (L, µ) are naturally
isometric.

Proof: Let the notation be chosen as in the statement of the proposition, and let
C denote the space of complementary regions of L̃, with metric dC as defined above.
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For each p ∈ Σ̃, there is timelike geodesic joining D∗
0(C(Up)) and D∞(p) (as in the

definition of D∗ in §6). Together, these geodesics define a deformation retraction
of Σ̃ onto S. Hence S is a connected, simply-connected, one-dimensional metric
space, in which the distance between two points is given by the path of minimal
length joining them. It follows that S is an R-tree.

There is an obvious π1(Σ)-equivariant inclusion of C into S which we will write
as ψ; by the uniqueness statement of Lemma 9.2, it will suffice to show that ψ
satisfies the various conditions of that lemma. The complement of ψ(C) in S is
precisely the collection of one-dimensional strata; since any such stratum divides
Σ̃ into two components both of which contain two-dimensional strata, conditions
(1) and (2) hold. It remains to verify that ψ is an isometric embedding.

For simplicity, we will assume we are in the (generic) case of a reduced flat
conformal structure; the necessary modifications for handling non-trivial Mercator
manifolds are left to the reader. Let β : [0, 1]→ Σ̃ be a geodesic path transverse to
the leaves of L̃ joining the complementary regions c0 and c1, and write cs for the
complementary region containing β(s) whenever β(s) /∈ |L̃|. Since S is an R-tree,
there is a unique arc [ψ(c0), ψ(c1)] joining ψ(c0) and ψ(c1) whose length is obtained
by means of the map D∗

0 : S → (H3)
∗
. The bending angle ∠β(s, t) between two

complementary regions is (by definition) computed by applying D0 and measuring
the dihedral angle between the corresponding pleats; equivalently we may apply
the dual map D∗

0 and considering the spacelike distance in S31. Therefore we have:

dC(c0, c1) =

∫

β

dµ

= inf{∠β(t0, t1) + · · ·+ ∠β(tk−1, tk)}

= inf{L[D∗
0(ψ(ct0)), D

∗
0(ψ(ct1))] + · · ·+ L[D∗

0(ψ(ctk−1
)), D∗

0(ψ(ctk))]}

= L(D∗
0([ψ(c0), ψ(c1)]))

= dS(ψ(c0), ψ(c1)).

(9.3)
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CHAPTER 10

Horizons in Standard de Sitter Spacetimes

We begin the discussion of Theorem 1.2 by constructing an interesting coun-
terexample in the two-dimensional case. It follows from Euler characteristic con-
siderations that any two-dimensional spacetime-bordism is homeomorphic to an
annulus; nevertheless we have found a family of de Sitter annuli which contain
non-trivial Cauchy horizons.

Suppose τ ∈ SO0(2, 1) is a hyperbolic element, and fix a ruling of S21 by null
lines. This defines a pair of disjoint null lines in S21 joining the two fixed points
of τ in ∂+∞S21 with the ones in ∂−∞S21. The element τ acts freely and properly
discontinuously on an open region U bounded by these two lines (compare figure
10.1, where for simplicity we have indicated this situation in the universal cover
of S21). The quotient U/〈τ〉 is a de Sitter annulus with two non-trivial Cauchy
horizons corresponding to the two null rays in U left invariant by τ . One can
construct similar examples which contain no closed timelike curves by choosing τ
to be parabolic. See figure 10.2.

In dimension three, similar examples arise when there are open subsets in the
Cauchy horizon which are foliated by null generators. As the next result shows,
for a standard de Sitter spacetime this occurs precisely when there is a closed leaf
in the associated measured geodesic lamination, which gives rise to an embedded
codimension-zero Hopf manifold.

Theorem 1.3 Suppose Σ is a closed, orientable surface with a CP 1-structure and
let M≈ Σ× (0,∞) be the associated standard de Sitter spacetime. Then M is a

Figure 10.1: The lightly shaded region indicates the universal cover of an open 1+1
de Sitter annulus with hyperbolic holonomy which is not a domain of dependence.
The darker region is a fundamental domain for compact annulus with spacelike
boundary.
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Figure 10.2: The lightly shaded region indicates the universal cover of an open 1+1
de Sitter annulus with parabolic holonomy which is not a domain of dependence.
The darker region is a fundamental domain for compact annulus with spacelike
boundary and no closed timelike curves.

domain of dependence, and embeds in a strictly larger de Sitter spacetime if and
only if Σ contains a codimension-zero Hopf manifold.

Proof: SupposeM≈ Σ×(0,∞) is a standard de Sitter spacetime, with de Sitter
structure (D∗, φ) = Ω+(D∞, φ) ∈ S31(M) as constructed in §6. We have shown in
Proposition 6.1 thatM is a domain of dependence, so we need only examine when
M can be extended to a strictly larger de Sitter spacetime.

The theorem is clear for elliptic standard de Sitter spacetimes. If M is a
parabolic standard de Sitter spacetime, then the image of φ consists entirely of
parabolic elements of SO0(3, 1) fixing a common point z ∈ ∂+∞S31. These elements
leave invariant each null line in I+(z); it follows that no two distinct generators
of φ(π1(Σ)) can act discontinuously on I+(z). Hence M cannot be extended to
a strictly larger de Sitter spacetime (our parabolic (1 + 1)-dimensional example
indicates the necessity of having at least two generators of the holonomy image).
For the remainder of the proof we shall assumeM is a hyperbolic standard de Sitter
spacetime, with space of strata S for Σ̃.

Suppose first thatM ( M′ for some de Sitter spacetimeM′; let D′ : M̃′ → S31
be the developing map extending D∗. Since the flat conformal structure is of
hyperbolic type, the genus g of Σ cannot be zero, and if g = 1, then Σ is a Hopf
manifold and we are done. Thus we may assume g is at least two, and so there
is an associated bending lamination (L, µ) ∈ ML(Σ) as in §9. For any t ∈ (0,∞)
we have H+(Σ× {t}) 6= ∅ in M′ since M is maximal as a domain of dependence.
Each point of H+(Σ̃×{t}) can be identified with an open round ball U for the flat
conformal structure on Σ satisfying U∞ 6= ∅. Recall that S embeds in the space of
open round balls for Σ; denote by SH the intersection of S and H+(Σ̃× {t}) and
by ST the collection of two-dimensional strata in SH .

Choose an open ball W ⊂ M̃′ around a point of H+(Σ̃×{t}), small enough so
that the projection to M′ and the developing map D′ are both one-to-one when
restricted to W .
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Claim 1: W ∩ ST = ∅.
First suppose that there are infinitely many two-dimensional strata cj lying in

W . All two-dimensional strata are complete hyperbolic surfaces and therefore each
has area at least π, so there can be at most 4g − 4 such strata on Σ by Gauss-
Bonnet. Thus there exists a subsequence {cjk} and corresponding elements {γjk}
in π1(Σ) with cjk = γjk · c for some fixed c ∈ ST . This contradicts our choice of
W . Now suppose there is an isolated point c0 ∈ W ∩ ST . One possibility is that
there are no one-dimensional strata, in which case c0 is fixed by every element of
φ(π1(Σ)), contradicting proper discontinuity of the action. On the other hand, if
L 6= ∅, the boundary leaves of c0 are isolated, hence are simple closed geodesics
with non-trivial holonomy by Lemma 9.1. But these holonomy elements all fix c0,
again contradicting proper discontinuity. This proves claim 1.

Claim 2: W ∩ SH = ∅.
Suppose not; so there is some t ∈ W ∩ SH . Using claim 1, there is a neigh-

borhood of t in S consisting only of one-dimensional strata. This corresponds to
a non-trivial embedded Hopf manifold, and in turn to an isolated simple closed
geodesic in L with positive transverse measure. The holonomy of this geodesic is
non-trivial and purely hyperbolic, from which we see that it fixes a family one-
dimensional strata near t. This contradicts proper discontinuity, thereby proving
claim 2.

Now suppose x ∈ H+(Σ̃× {t}). It was shown earlier that the Cauchy horizon
for a standard de Sitter spacetime is locally convex, so there are local support
planes at x. The degenerate support planes at x each define a point of ∂−∞S31; let C
be the convex hull of these points in H3. The set C is dual to the set of spacelike
support planes at x. When x has at least three degenerate support planes, C is a
complementary region of the bending lamination (and so x ∈ ST ), while if x has
exactly two degenerate support planes, C is a leaf of the bending lamination (and
x ∈ SH). Thus each point in the remainder of the frontier F \ δ(T ) has a unique
degenerate support plane, and by the above results, there is an induced foliation
of W by null lines.

Case 1: L = ∅.
The holonomy representation φ is Fuchsian, preserving a plane ∆ ⊂ H3, and the

frontier F of the image of D is a past-pointing null cone from the pole ∆∗ ∈ (H3)
∗
.

Let Γ = φ(π1(Σ)). There is a natural identification between F \{∆∗} and the set of
(left) horocycles in ∆. Hedlund’s theorem [21] shows that for any (left) horocycle
H viewed as a subset of the unit tangent bundle UT (∆), the set ΓH is dense in
UT (∆). It follows immediately from the above identification that the action of Γ
on F is not properly discontinuous at any point.
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Figure 10.3: “Bending” along an isolated geodesic in hyperbolic space is equiva-
lent to “grafting” a θ-annulus on CP 1, and also to inserting a region foliated by
asymptotic null rays in de Sitter space (“stretching”).

Case 2: L 6= ∅.
The proof in this case is analogous to Proposition 14 of [35]; one shows that

the set of basepoints of null rays foliating W is a spacelike segment dual to an
isolated leaf. The isolated leaf has positive transverse measure by Lemma 9.1, and
therefore corresponds to a non-trivial embedded Hopf manifold. This completes
the first half of Theorem 1.3.

Conversely, suppose there is an embedded codimension-zero Hopf manifold in
Σ. The invariant axis of the holonomy of this submanifold projects to a closed
leaf λ in L. Let λ̃ be a lift of λ to the universal cover Σ̃, and let c0 and c1
be the neighboring complementary regions. Then as above, there is a unique
segment [ψ(c0), ψ(c1)] ⊆ S, which maps under D∗

0 to a spacelike line segment of
length equal to the transverse measure across λ. The holonomy of λ, being purely
hyperbolic, fixes this segment pointwise. From each point of D∗

0([ψ(c0), ψ(c1)]),
there are two null rays meeting the fixed points at infinity of φ(〈λ〉), see figure
10.3. This is completely analogous to the two-dimensional example constructed at
the beginning of this chapter. We may extendM toM′ so that M̃′ \ M̃ develops
into a small holonomy-invariant neighborhood of the translates of one of these
rays. Thus we have embedded M in a strictly larger de Sitter spacetime (which
is necessarily non-compact and contains closed causal curves). This completes the
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Figure 10.4: The effect on the limit set of bending a (fictional) Fuchsian group on
the lifts of a single simple closed geodesic is illustrated here; these are the so-called
“Mickey Mouse” examples of Thurston.
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proof of Theorem 1.3.
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CHAPTER 11

Proofs of Main Theorems

The first proposition is the key observation from which our main results are
derived.

Proposition 11.1 Suppose M is a spacetime of constant curvature, and Σ ⊂M
is a closed achronal spacelike hypersurface. Suppose further that H+(Σ) is non-
empty, and the null generators of H+(Σ) are past complete. Then H+(Σ) is locally
convex from the future, with degenerate support planes corresponding to the null
generators of H+(Σ).

Proof: Write dev : M̃ → X for the developing map into the appropriate constant
curvature model space X = Sn1 ,Rn

1 , or Hn
1 . Take x ∈ H+(Σ); by Lemma 3.2

there exists an inextendible, past-pointing null generator β starting at x and lying
entirely within H+(Σ). Choose a lift x̃ ∈ M̃ of x, and let β̃ be the lift of β starting
at x̃. There is a unique degenerate hyperplane N ⊂ X containing dev(β̃); we
claim N is a local support plane for the developing image of a neighborhood of x̃

in H+(Σ̃) = H̃+(Σ). Suppose not, so there is a point p ∈ I+(N) in the developing
image of a small neighborhood in H+(Σ̃) of x̃. But Proposition 3.4 implies that
p ∈ I+(dev(β̃)); choosing p close enough to dev(x̃), we assure the existence of a
past-pointing timelike curve from p to a point of dev(β̃) which lies entirely within
the developing image of a small neighborhood of β̃. This contradicts the fact that
H+(Σ) is achronal, proving the proposition.

We have modified the statement of Theorem 1.1, taking advantage of the for-
malism of §3:

Theorem 1.1 If Σ is a spacelike de Sitter hypersurface, then Mmax(Σ) is a stan-
dard de Sitter spacetime.

Proof: IfMmax(Σ) is both past and future complete, it follows that it is isometric
to a manifold of the form Sn1/Γ for some finite subgroup of Γ of SO0(n, 1) (see the
Appendix). It is well-known [49, 11.2] that all such subgroups are conjugate into
the maximal compact subgroup SO(n) of SO0(n, 1), and therefore Γ acts freely
and isometrically on ∂+∞Sn+11 and ∂−∞Sn+11 . Thus Mmax(Σ) is a standard de Sitter
spacetime arising from the spherical space form so-defined.

Assume now, without loss of generality, that Mmax(Σ) fails to be future com-
plete, and apply Proposition 3.3 to embedMmax(Σ̃) inMmax(Σ̃) so that H+(Σ̃) 6=
∅ and all null generators are past complete. Combining Propositions 11.1 and 7.2
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shows that there is a global Cauchy hypersurface Σ′ for D+(Σ) =Mmax(Σ) which
is locally strictly convex from the future. Thus Mmax(Σ) ⊆ Mmax(Σ

′). Under
this inclusion Σ becomes a global Cauchy hypersurface for the spacetimeMmax(Σ

′)
since any causal curve meets Σ′ and therefore Σ also; henceMmax(Σ) =Mmax(Σ

′).
Because Σ′ is locally strictly convex and spacelike, we can define a correspond-

ing flat conformal structure on Σ′ by the Gauss map; i.e. following the unique
timelike normal line at each point of the developing image of Σ̃′ to past infinity
defines an equivariant developing map D∞ : Σ̃′ → ∂−∞Sn+11 . The standard de Sitter
spacetime corresponding to this flat conformal structure contains Σ′ as a global
Cauchy hypersurface, and so it equals Mmax(Σ

′). Thus Mmax(Σ) is a standard
de Sitter spacetime.

Theorem 1.2 Every three-dimensional de Sitter spacetime-bordism is a domain
of dependence, with the exception of those standard de Sitter spacetimes arising
from closed two-dimensional Hopf manifolds.

Proof: We begin by assuming that M is a de Sitter spacetime-bordism which
is not a domain of dependence. The boundary of M is non-empty; without loss
of generality assume ∂−M 6= ∅ and so there is a component Σ ⊆ ∂−M such
that H+(Σ) 6= ∅. As noted in §3, there is an isometric embedding ι : D+(Σ) ↪→
Mmax(Σ). By the Classification Theorem 1.1, Mmax(Σ) is a standard de Sitter
spacetime, arising from some flat conformal structure on Σ. The embedding ι ex-

tends to an isometric embedding ι′ : D+(Σ̃) ↪→ Mmax(Σ̃). The action of π1(Σ)
on Mmax(Σ̃) is described by Theorem 1.3, which shows in particular that the flat
conformal structure on Σ is of hyperbolic type and contains a codimension-zero
Hopf manifold Σ0. Let H0 be the region in the future Cauchy horizon foliated by
null rays associated to Σ0. The proof of Theorem 1.3 shows that any holonomy ele-
ments which are not in the infinite cyclic subgroup corresponding to Σ0 cannot act
discontinuously on H0. We conclude that Σ is itself a Hopf manifold, completing
the proof.
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APPENDIX A

Survey of Classification Theorems

In this appendix, we will provide statements of many of the theorems concern-
ing the classification of constant curvature Lorentz metrics on compact manifolds,
concentrating particularly on dimension three. We first consider the case of closed
(compact, no boundary) spacetimes. With no curvature assumptions, such a space-
time need not be complete; the classical Clifton-Pohl torus serves as the standard
counterexample (see [41, Ch. 7]). The key rigidity result for constant curvature
spacetimes is as follows:

Theorem A.1 A closed spacetime of constant curvature is (geodesically) com-
plete.

This was first proved by Carrière [2] in the flat case and extended to the anti-
de Sitter case by Mess in [35]. A unified proof containing all three cases has
recently been given by Klingler [26].

It follows from Theorem A.1 that any closed spacetime of constant curvature is
of the form X/Γ, where X is the appropriate constant curvature model space and
Γ is a discrete cocompact group of isometries of X. With this in mind, de Sitter
manifolds become particularly easy to classify:

Proposition A.2 A complete de Sitter spacetime has finite fundamental group.

Proof: [49] Let Sn1/Γ be a complete de Sitter spacetime, and suppose Γ is infinite.
We have an embedding of flat Euclidean space En ⊂ Rn+1

1 as the set of vectors such
that xn+1 = 0, and so Sn−1 = Sn1 ∩ En. For any transformation A ∈ GL(n + 1,R)
we have that dim(En ∩ A(En)) ≥ n − 1, and thus for every γ ∈ Γ, we have
γ(Sn−1) ∩ Sn−1 6= ∅. By compactness of Sn−1, there exist infinitely many distinct
elements γi ∈ Γ and points xi ∈ Sn−1 such that the sequence {γixi} converges to
a point y ∈ Sn−1. Subsequence so that {xi} converges to a point x ∈ Sn−1. Thus
{γix} converges to y, contradicting proper discontinuity at x.

Corollary A.3 There are no closed de Sitter spacetimes.

Next, we consider the flat case. The group of isometries of Rn
1 is represented

in the usual way as a semi-direct product of O(n − 1, 1) and Rn
1 ; we write L :

Isom(Rn
1 )→ O(n−1, 1) for the homomorphism projecting to the linear part. Given

a subgroup Γ of Isom(Rn
1 ), define T (Γ) = kerL

∣

∣

Γ
; we call T (Γ) the translational
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subgroup of Γ. The image L(Γ) is the linear holonomy of Γ. We have the following
short exact sequence:

1→ T (Γ)→ Γ→ L(Γ)→ 1 (A.1)

Proposition A.4 If M is a closed, three-dimensional, flat spacetime then π1M
is virtually solvable.

Proof: A closed, three-dimensional, flat spacetime is complete by Theorem A.1
and will therefore be identified with the quotient R3

1/Γ for a discrete subgroup
Γ ⊂ Isom(R3

1). Arguing as in [9] or [35], if the linear holonomy L(Γ) fails to be
discrete, then Γ is automatically solvable. On the other hand, if L(Γ) is discrete,
we can break the proof up into cases depending on the rank of the translational
subgroup T (Γ). If rank(T (Γ)) = 3, it follows thatM is finitely covered by a torus,
and so clearly Γ is virtually solvable. Similarly, if rank(T (Γ)) = 1 or 2, then L(Γ)
leaves invariant a non-trivial linear subspace in R3

1, and again Γ is solvable. In the
last case, Γ ∼= L(Γ), which would imply the cohomological dimension of Γ is 2, a
contradiction.

This is an extremely easy special case of the main theorem of [17], which asserts
that the fundamental group of a closed flat spacetime of any dimension is virtually
polycyclic. In dimension three it follows from Proposition A.4 that a closed flat
spacetime is finitely covered by a torus bundle over S1 (see [7]), and hence that
it is modeled on a three-dimensional solvable Lie group (Nil, Solv, or E3). The
classification of the possible lattices Γ up to affine isomorphism is given in [9].

For the anti-de Sitter case, we note that there is an identification of H3
1 with

SL(2,R), where the indefinite metric is given by an appropriate multiple of the
Killing form. The identity component of the isometry group of H3

1 is SO0(2, 2),
and with respect to the above identification, we have an isomorphism

SO0(2, 2) ∼= (SL(2,R)× SL(2,R)/(−I,−I) (A.2)

where the action is by left and right multiplication on SL(2,R). The results of
[30] and [14] have the following consequence:

Theorem A.5 A closed, three-dimensional, anti-de Sitter spacetime is homeo-
morphic to either a Seifert fibered space with non-zero Euler number, or a connected
sum of lens spaces. Conversely, any such three-manifold admits an anti-de Sitter
structure.

Finally we outline very briefly the results obtained by Mess in the case of flat
and anti-de Sitter spacetime-bordisms. The first result is obtained by modifying
Carrière’s proof of Theorem A.1.

Theorem A.6 Every three-dimensional flat or anti-de Sitter spacetime-bordism
is homeomorphic to a product Σ× [0, 1] with spacelike slices Σ× {t}.
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The classification theory in the flat case is similar in many respects to our
development in the de Sitter case. When the genus of Σ is at least two, the
standard flat spacetimes are by definition those domains of dependence which
contain a strictly convex global Cauchy hypersurface. As in the de Sitter case, these
standard examples have convex Cauchy horizons. This enables one to parameterize
the standard flat spacetimes by the space of all measured geodesic laminations
T (Σ)×ML(Σ). Every three-dimensional flat spacetime-bordism which is a domain
of dependence isometrically embeds in a standard flat spacetime.

The standard anti-de Sitter spacetimes homeomorphic to Σ× [0, 1] are param-
eterized by T (Σ)× T (Σ), where for any pair of Fuchsian representations (ρL, ρR)
Mess constructs a corresponding anti-de Sitter spacetime with this holonomy in
PSL(2,R) × PSL(2,R). Once again, the classification theorem states that any
anti-de Sitter spacetime which is a small regular neighborhood of a compact space-
like surface isometrically embeds in a standard anti-de Sitter spacetime. The reader
is encouraged to consult [35] for details.
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