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“Praistriichan”

New lrish portmanteau word:
“praiseach” = “a mess, a botch job”, “aistriuchan” = “translation”
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Language modeling

A language model (LM) is a probability distribution over sequences of words
If S = “colorless green ideas...”, a language model assigns this a prob P(S):
P(S) = P(colorless|?®) P(greenlcolorless) P(ideaslcolorless green) ...

Usually formulated and computed this way (word prob given history)

LMs capture a lot! Pragmatics, syntax, real-world knowledge, ...

P(FridaylMy party is this coming) > P(TuesdaylMy party is this coming)
P(isIThe man with the glasses) > P(arelThe man with the glasses)



Applications

Almost all important language technologies use LMs at some level!

Can be used generatively

MT, ASR, etc. fundamentally generate text, conditioned on input
Conversational agents (Turing test)

Traditional probabilistic models (“noisy channel”): P(T I S)=P(S | T) P(T) / P(S)
Strong LM alone can do question answering, summarization, ... (GPT-2) !
Better language models give better end-to-end performance, generally



Intrinsic and extrinsic evaluation

Extrinsic: incorporate in language tech and evaluate end-to-end
Intrinsic: what probability does the model assign to a big test corpus?
S = w,w,w,..w, where N is in the millions or more
Average log- prob of over words (units are bits/word)

[-2log,P (w lww,ow,.. W, J1/N
Approximation of cross- entropy between language and the model
Best non-neural “n-gram” models for English just over 6 bits/word

State-of-the-art neural models for English now under 4 bits/word



Neural language models

A flood of recent papers on neural language modeling, big leaps forward
Originally, feed-forward neural networks (Bengio et al, 2003)

Various refinements + regularization of recurrent networks (LSTMs, etc.)
Most recently the Transformer architecture (Vaswani et al, 2017)

OpenAl’s recently announced GPT-2 for English

“...concerns about [the model] being used to generate deceptive, biased, or
abusive language at scale”
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Research on English |= Research on Language

e 8tables tracking SOTA for language modeling; English datasets only
e Research almost 100% (and implicitly!) focused on English

e The word “English” isn’t used even once in these groundbreaking papers:

o  Google Brain’s landmark 2016 paper “Exploring the limits of language modeling”

o Melis et al’'s “On the state of the art of evaluation in neural language models” (2017)
o Dai et al’'s “Transformer-XL” paper (2019)

o New SOTA “Megatron-LM” paper (up on arXiv Sept 17th!)

e “Bender Rule”
e SOTA neural models applied to many other languages actually perform worse



Celtic initial mutations

Celtic languages have initial mutations usually triggered by context
bad seoil “sailboat”, mo bhad seoil “my sailboat”, ar mbad seoil “our sailboat”
Gender: fear “man”, an fear bocht “the poor man”, but:
bean “woman”, an bhean bhocht “the poor woman”
Dative case: ar an mbad seoil “on the sailboat” (or, ar an bhad seoil)
Genitive plural:  leithreas na bhfear
toilet DET.GEN.PL men.GEN.PL
“the men’s toilet”
e Dozens, maybe hundreds of rules that no one knows or uses completely



Motivating examples

e This was (one of) Google’s mistakes in the earlier image:
*trid an bothar — trid an mbothar
through the road
e And Intergaelic too, tricked by VSO:
*choinnigh an siopa na gcadcai a bhi  acu
kept the shop the cakes that were at-them
“the shop kept their cakes”
(cf. siopa na gcacai “the shop of the cakes”, “the cake shop”)



Factored language models

Word-based LMs don’t see that bad, bhad, mbad are really the same word
Since “bad” is most common, harder to predict collocations like “bhad seoil”
Well-known issue in LMs for morphologically complex languages

Standard solution: factored language models (Bilmes and Kirchhoff, 2003)
View each word w, as a bundle of features ', ..., f

Factor P(w) as a product of feature probabilities conditioned on earlier features
For mutations, e.g., P(bhad | ... mo) = P(bad | ... mo) P( lenition | ... mo bad)



Mutations as low-entropy features

Celtic mutations carry very little information

Usually determined by the previous two words and initial letter of target word
Could remove them and one can almost always replace them unambiguously
Using our language modeling framework we can assign a number to this!
“Average number of bits per word carried by mutations” (claiming it’'s small)
Five mutations: none, lenition, eclipsis, t-prothesis, h-prothesis

Build a model that predicts P(mutation | word history) as in the factored model
Compute the log, loss of this model on a test set



Which mutations carry information? (part one)

[13 ”

e 3rd person possessive “a

a bad a bhad a mbad

her boat his boat their boat
e Certain set phrases

Ta sé ar sidl Ta sé ar shidl

“It is underway” “He is away”
e (ccasional syntactic bad luck
Ta an bhean ghnothach ina hoifig  Ta an bhean gnothach ina hoifig
“The busy woman is in her office” “The woman is busy in her office”
e Tense: copula gur triggers lenition only in past tense
e Dialect: “ar an mbad” (Connacht, Munster) vs “ar an bhad” (Ulster)



Digression: orthographic transparency

Four of the five mutations in Irish can be trivially and algorithmically removed
h-prothesis cannot, in general: (hamhlaidh vs. hidrigin)

Even with a dictionary, some ambiguity: aiste “essay” vs. haiste “hatch”

| strip all h’s and let the neural networks figure it out!

Note this introduces issues with English, too: (h)all, (h)airline, (h)and, etc.
Scottish Gaelic is transparent in all cases (they write h-)

Welsh, Cornish, Breton, and Manx Gaelic are not at all transparent!
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Results

2.32193 (log,5) bits/word for random labels

0.78936 bits/word using label prior probabilities

0.50388 bits/word using unigram model (label distribution per word)
0.05619 bits/word: NN trained on 40M words, 40k vocabulary, 15 epochs



Applications

Improved LM for Irish when used in a factored model on demutated words
Hope to show end-to-end improvement on machine translation engines (WIP)
Data-driven grammar checking which robustly handles variant spellings, etc.
Sociolinguistics: wild divergence between official standard(s) and actual usage



Which mutations carry information? (part two)

Data-driven answer to the question above

Of 10000 examples | checked, correct label was assigned P<0.5 184 times
These 184 examples contribute 72% of the total loss

58 are usage errors in the test file including the top 9 producing largest loss
37 relate to the third person possessive in one form or another

16 are dialect differences

10 were assigned low prob only because of lack of context to the right

8 relate to difference between past tense and imperative verbs

8 relate to two versions of relativizing particle “a” (one lenites, one eclipses)
Various assorted others



Gender bias

e tasé/si ina mhuinteoir/muinteoir
is he/she in-his/her teacher
“he/she is a teacher”
e male bias in corpus: cathaoirleach (chairperson), ceannaire (leader), traenalar
(trainer), gobharnoir (governor), oifigeach (officer), aire (government minister)
e female bias in corpus: déagoir (teenager), girseach (girl), cailleach (witch),
dornalai (boxer), damhsoir (dancer), comhstiurthoir (co-director)



Scaling up to 1000’s of languages

Crubadan project; web crawled corpora for under-resourced languages
Now crawling 2233 languages, hundreds more queued for training
Scaled up thanks to NSF grant 1159174, see http://crubadan.org/

Twitter corpora for 180 languages (indigenoustweets.com), 2011-present
RSS feeds and public Facebook groups (and hand posted links to crawler)



Thank you! / Go raibh maith agaibh!

http://cs.slu.edu/Yscannell/
https://cadhan.com/
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http://chuala.me/
http://intergaelic.com/
http://corpas.ria.ie/
https://github.com/kscanne/


http://cs.slu.edu/~scannell/
https://cadhan.com/
http://crubadan.org/
http://indigenoustweets.com/
http://chuala.me/
http://intergaelic.com/
http://corpas.ria.ie/
https://github.com/kscanne/

